
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

PSoC® Creator™

PSoC 3/PSoC 5LP System Reference Guide

cy_boot Component v5.90

Document Number: 002-28380 Rev. **

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
http://www.cypress.com

 Copyrights

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 2

© Cypress Semiconductor Corporation, 2019. This document is the property of Cypress Semiconductor
Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any
software or firmware included or referenced in this document (“Software”), is owned by Cypress under
the intellectual property laws and treaties of the United States and other countries worldwide. Cypress
reserves all rights under such laws and treaties and does not, except as specifically stated in this
paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a
written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a
personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright
rights in the Software (a) for Software provided in source code form, to modify and reproduce the
Software solely for use with Cypress hardware products, only internally within your organization, and (b)
to distribute the Software in binary code form externally to end users (either directly or indirectly through
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims
of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make,
use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR
ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by
applicable law, Cypress reserves the right to make changes to this document without further notice.
Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design
information or programming code, is provided only for reference purposes. It is the responsibility of the
user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed,
intended, or authorized for use as critical components in systems designed or intended for the operation
of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or
hazardous substances management, or other uses where the failure of the device or system could
cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the
failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or
in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress
harmless from and against all claims, costs, damages, and other liabilities, including claims for personal
injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC,
CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com.
Other names and brands may be claimed as property of their respective owners.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 3

Contents

1 Introduction ... 9

Conventions.. 10

References ... 10

Sample Firmware Source Code .. 10

Revision History .. 10

2 Standard Types, APIs, and Defines .. 11

Base Types ... 11

Hardware Register Types .. 11

Compiler Defines .. 11

Keil 8051 Compatibility Defines ... 12

Return Codes ... 12

Interrupt Types and Macros... 13

Interrupt vector address type .. 13

Intrinsic Defines .. 13

Device Version Defines ... 13

Variable Attributes ... 13

Instance APIs.. 14

General APIs .. 14

Low Power APIs ... 15

PSoC Creator Generated Defines ... 15

Project Type ... 15

Chip Configuration Mode .. 16

Debugging Mode .. 16

Chip Protection Mode ... 17

Stack and Heap .. 17

Voltage Settings ... 17

System Clock Frequency .. 18

JTAG/Silicon ID .. 18

IP Block Information.. 18

3 Clocking .. 19

PSoC Creator Clocking Implementation .. 19

Overview .. 19

Clock Connectivity .. 20

 Contents

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 4

Clock Synchronization .. 20

Routed Clock Implementation ... 22

Using Asynchronous Clocks.. 26

Clock Crossing ... 26

Gated Clocks .. 27

Fixed-Function Clocking ... 28

UDB-Based Clocking .. 28

Changing Clocks in Run-time.. 29

Low Voltage Analog Boost Clocks ... 29

APIs ... 30

void SetAnalogRoutingPumps(uint8 enabled) ... 30

uint8 CyPLL_OUT_Start(uint8 wait) .. 31

void CyPLL_OUT_Stop() .. 31

void CyPLL_OUT_SetPQ(uint8 pDiv, uint8 qDiv, uint8 current)...................................... 31

void CyPLL_OUT_SetSource(uint8 source) .. 32

void CyIMO_Start(uint8 wait) .. 32

void CyIMO_Stop() ... 32

void CyIMO_SetFreq(uint8 freq) ... 33

void CyIMO_SetSource(uint8 source) ... 33

void CyIMO_EnableDoubler() ... 33

void CyIMO_DisableDoubler() .. 33

void CyBusClk_SetDivider(uint16 divider) ... 34

void CyCpuClk_SetDivider(uint8 divider) ... 34

void CyMasterClk_SetSource(uint8 source) .. 34

void CyMasterClk_SetDivider(uint8 divider) .. 35

void CyUsbClk_SetSource(uint8 source) .. 35

void CyILO_Start1K().. 35

void CyILO_Stop1K() .. 35

void CyILO_Start100K() .. 35

void CyILO_Stop100K() .. 35

void CyILO_Enable33K() .. 36

void CyILO_Disable33K() ... 36

void CyILO_SetSource(uint8 source) .. 36

uint8 CyILO_SetPowerMode(uint8 mode) ... 36

uint8 CyXTAL_Start(uint8 wait) ... 37

void CyXTAL_Stop() ... 37

void CyXTAL_EnableErrStatus() ... 37

void CyXTAL_DisableErrStatus() .. 37

uint8 CyXTAL_ReadStatus() ... 37

void CyXTAL_EnableFaultRecovery() ... 37

void CyXTAL_DisableFaultRecovery() .. 38

void CyXTAL_SetStartup(uint8 setting) ... 38

Introduction

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 5

void CyXTAL_SetFbVoltage(uint8 setting) ... 38

void CyXTAL_SetWdVoltage(uint8 setting).. 38

void CyXTAL_32KHZ_Start() .. 38

void CyXTAL_32KHZ_Stop() .. 38

uint8 CyXTAL_32KHZ_ReadStatus() .. 38

uint8 CyXTAL_32KHZ_SetPowerMode(uint8 mode).. 39

void CySetScPumps(uint8 enable) .. 39

4 Power Management .. 40

Implementation ... 40

Low Power Usage .. 40

Clock Configuration .. 40

Wakeup Time Configuration .. 41

Wakeup Source Configuration .. 42

Power Management APIs ... 43

5 Interrupts ... 51

APIs ... 51

CyGlobalIntEnable.. 51

CyGlobalIntDisable ... 51

uint32 CyDisableInts() .. 51

void CyEnableInts(uint32 mask).. 51

void CyIntEnable(uint8 number) .. 52

void CyIntDisable(uint8 number) ... 52

uint8 CyIntGetState(uint8 number) .. 52

cyisraddress CyIntSetVector(uint8 number, cyisraddress address) 52

cyisraddress CyIntGetVector(uint8 number) .. 52

cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address) 53

cyisraddress CyIntGetSysVector(uint8 number) .. 53

void CyIntSetPriority(uint8 number, uint8 priority) .. 53

uint8 CyIntGetPriority(uint8 number) ... 53

void CyIntSetPending(uint8 number)... 54

void CyIntClearPending(uint8 number).. 54

6 Pins .. 55

APIs ... 55

uint8 CyPins_ReadPin(uint16/uint32 pinPC) ... 55

void CyPins_SetPin(uint16/uint32 pinPC) ... 55

void CyPins_ClearPin(uint16/uint32 pinPC) .. 55

void CyPins_SetPinDriveMode(uint16/uint32 pinPC, uint8 mode).................................. 56

uint8 CyPins_ReadPinDriveMode(uint16/uint32 pinPC) .. 56

void CyPins_FastSlew(uint16/uint32 pinPC) ... 56

void CyPins_SlowSlew(uint16/uint32 pinPC) ... 56

 Contents

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 6

7 Register Access .. 57

APIs ... 57

uint8 CY_GET_REG8(uint16/uint32 reg)... 57

void CY_SET_REG8(uint16/uint32 reg, uint8 value) ... 57

uint16 CY_GET_REG16(uint16/uint32 reg) ... 58

void CY_SET_REG16(uint16/uint32 reg, uint16 value).. 58

uint32 CY_GET_REG24(uint16/uint32 reg) ... 58

void CY_SET_REG24(uint16/uint32 reg, uint32 value).. 58

uint32 CY_GET_REG32(uint16/uint32 reg) ... 58

void CY_SET_REG32(uint16/uint32 reg, uint32 value).. 59

uint8 CY_GET_XTND_REG8(uint32 reg) .. 59

void CY_SET_XTND_REG8(uint32 reg, uint8 value) .. 59

uint16 CY_GET_XTND_REG16(uint32 reg) .. 59

void CY_SET_XTND_REG16(uint32 reg, uint16 value)... 59

uint32 CY_GET_XTND_REG24(uint32 reg) .. 60

void CY_SET_XTND_REG24(uint32 reg, uint32 value)... 60

uint32 CY_GET_XTND_REG32(uint32 reg) .. 60

void CY_SET_XTND_REG32(uint32 reg, uint32 value)... 60

8 DMA ... 61

9 Flash and EEPROM ... 62

Implementation ... 62

Flash Architecture ... 62

EEPROM Architecture .. 63

Working with Flash and EEPROM... 63

Flash and EEPROM APIs ... 65

10 System Functions ... 70

General APIs .. 70

uint8 CyEnterCriticalSection(void) ... 70

void CyExitCriticalSection(uint8 savedIntrStatus) .. 70

void CYASSERT(uint32 expr) ... 70

void CyHalt(uint8 reason) ... 71

void CySoftwareReset(void).. 71

void CyGetUniqueId(uint32* uniqueId) .. 71

CyDelay APIs.. 71

void CyDelay(uint32 milliseconds) .. 71

void CyDelayUs(uint16 microseconds) .. 72

void CyDelayFreq(uint32 freq) .. 72

void CyDelayCycles(uint32 cycles) ... 72

Voltage Detect APIs .. 72

Functional Description .. 72

Device Reset .. 73

Introduction

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 7

Low/High-Voltage Detection .. 73

Interrupt Configuration .. 73

Best Practices .. 73

APIs ... 74

Cache Functionality .. 77

PSoC 3... 77

PSoC 5LP .. 77

Macro Callbacks ... 77

11 Startup and Linking .. 79

PSoC 3 ... 80

PSoC 5LP... 80

Unaligned Transfers (PSoC 5LP) .. 80

GCC Implementation .. 80

Realview Implementation (applicable for MDK .. 81

CMSIS Support .. 81

High-Level I/O Functions... 83

The printf() Usage Model .. 83

Preservation of Reset Status... 84

PSoC 3/PSoC 5LP ... 84

API Memory Usage ... 84

PSoC 3 (Keil PK51) .. 85

PSoC 5LP (GCC) ... 85

Performance ... 85

Functions Execution Time ... 85

Critical Sections Duration.. 86

12 Watchdog Timer (WDT) ... 87

APIs ... 87

void CyWdtStart(uint8 ticks, uint8 lpMode) .. 87

void CyWdtStart(uint8 ticks, uint8 lpMode) (continued).. 87

void CyWdtClear() .. 87

13 MISRA Compliance ... 88

Verification Environment ... 88

Project Deviations ... 89

Documentation Related Rules ... 90

PSoC Creator Generated Sources Deviations ... 91

cy_boot Component-Specific Deviations [] ... 92

14 System Timer (SysTick) .. 94

Functional Description .. 94

APIs ... 94

Functions.. 94

Global Variables ... 97

 Contents

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 8

15 cy_boot Component Changes .. 98

Version 5.90.. 98

Version 5.80.. 98

Version 5.70.. 98

Version 5.60.. 98

Version 5.50.. 99

Version 5.40.. 99

Version 5.30.. 99

Version 5.20.. 99

Version 5.10.. 99

Version 5.0 ... 100

Version 4.20.. 101

Version 4.11 .. 104

Version 4.10.. 104

Version 4.0 ... 105

Version 3.40 and Older ... 106

Version 3.40 ... 106

Version 3.30 ... 106

Version 3.20 ... 107

Version 3.10 ... 107

Version 3.0 ... 107

Version 2.40 and Older ... 109

Version 2.40 ... 109

Version 2.30 ... 109

Version 2.21 ..110

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 9

1 Introduction

This System Reference Guide describes functions supplied by the PSoC Creator cy_boot component.

The cy_boot component provides the system functionality for a project to give better access to chip

resources. The functions are not part of the component libraries but may be used by them. You can use

the function calls to reliably perform needed chip functions.

The cy_boot component is unique:

◼ Included automatically into every project

◼ Only a single instance can be present

◼ No symbol representation

◼ Not present in the Component Catalog (by default)

As the system component, cy_boot includes various pieces of library functionality. This guide is organized

by these functions:

◼ DMA

◼ Flash

◼ Clocking

◼ Power management

◼ Startup code

◼ Various library functions

◼ Linker scripts

The cy_boot component presents an API that enables user firmware to accomplish the tasks described in

this guide. There are multiple major functional areas that are described separately.

 Introduction

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 10

Conventions

The following table lists the conventions used throughout this guide:

Convention Usage

Courier New Displays file locations and source code:

C:\ …cd\icc\, user entered text

Italics Displays file names and reference documentation:

sourcefile.hex

[bracketed, bold] Displays keyboard commands in procedures:

[Enter] or [Ctrl] [C]

File > New Project Represents menu paths:

File > New Project > Clone

Bold Displays commands, menu paths and selections, and icon names in
procedures:

Click the Debugger icon, and then click Next.

Text in gray boxes Displays cautions or functionality unique to PSoC Creator or the PSoC device.

References

This guide is one of a set of documents pertaining to PSoC Creator and PSoC devices. Refer to the

following other documents as needed:

◼ PSoC Creator Help

◼ PSoC Creator Component Datasheets

◼ PSoC Creator Component Author Guide

◼ PSoC Technical Reference Manual (TRM)

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code in the

Find Example Project dialog. For component-specific examples, open the dialog from the Component

Catalog or an instance of the component in a schematic. For general examples, open the dialog from the

Start Page or File menu. As needed, use the Filter Options in the dialog to narrow the list of projects

available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Revision History

Document Title: PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide, cy_boot Component v5.90

Document Number: 002-25676

Revision Date Description of Change

** 11/19/18 New document for version 5.80 of the cy_boot Component.
Refer to the change section for Component changes from
previous versions of cy_boot.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 11

2 Standard Types, APIs, and Defines

To support the operation of the same code across multiple CPUs with multiple compilers, the cy_boot

component provides types and defines (in the cytypes.h file) that create consistent results across

platforms.

Base Types

Type Description

char8 8-bit (signed or unsigned, depending on the compiler selection for char)

uint8 8-bit unsigned

uint16 16-bit unsigned

uint32 32-bit unsigned

int8 8-bit signed

int16 16-bit signed

int32 32-bit signed

float32 32-bit float

float64 64-bit float (unavailable for PSoC 3)

int64 64-bit signed (unavailable for PSoC 3)

uint64 64-bit unsigned (unavailable for PSoC 3)

Hardware Register Types

Hardware registers typically have side effects and therefore are referenced with a volatile type.

Define Description

reg8 Volatile 8-bit unsigned

reg16 Volatile 16-bit unsigned

reg32 Volatile 32-bit unsigned

Compiler Defines

The compiler being used can be determined by testing for the definition of the specific compiler. For

example, to test for the PSoC 3 Keil compiler:

#if defined(__C51__)

Define Description

__C51__ Keil 8051 compiler

__GNUC__ ARM GCC compiler

 Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 12

Define Description

__ARMCC_VERSION ARM Realview compiler used by Keil MDK and RVDS tool sets

Keil 8051 Compatibility Defines

The Keil 8051 compiler supports type modifiers that are specific to this platform. For other platforms these

modifiers must not be present. For compatibility these types are supported by defines that map to the

appropriate string when compiled for Keil and an empty string for other platforms. These defines are used

to create optimized Keil 8051 code while still supporting compilation on other platforms.

Define Keil Type Other Platforms

CYBDTA bdata

CYBIT bit uint8

CYCODE code

CYCOMPACT compact

CYDATA data

CYFAR far

CYIDATA idata

CYLARGE large

CYPDATA pdata

CYREENTRANT reentrant

CYSMALL small

CYXDATA xdata

Return Codes

Return codes from Cypress routines are returned as an 8-bit unsigned value type: cystatus. The standard

return values are:

Define Description

CYRET_SUCCESS Successful

CYRET_UNKNOWN Unknown failure

CYRET_BAD_PARAM One or more invalid parameters

CYRET_INVALID_OBJECT Invalid object specified

CYRET_MEMORY Memory related failure

CYRET_LOCKED Resource lock failure

CYRET_EMPTY No more objects available

CYRET_BAD_DATA Bad data received (CRC or other error check)

CYRET_STARTED Operation started, but not necessarily completed yet

CYRET_FINISHED Operation completed

CYRET_CANCELED Operation canceled

CYRET_TIMEOUT Operation timed out

CYRET_INVALID_STATE Operation not setup or is in an improper state

Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 13

Interrupt Types and Macros

Types and macros provide consistent definition of interrupt service routines across compilers and

platforms. Note that the macro to use is different between the function definition and the function

prototype.

Function definition example:

CY_ISR(MyISR)

{

 /* ISR Code here */

}

Function prototype example:

CY_ISR_PROTO(MyISR);

Interrupt vector address type

Type Description

cyisraddress Interrupt vector (address of the ISR function)

Intrinsic Defines

Define Description

CY_NOP Processor NOP instruction

Device Version Defines

Define Description

CY_PSOC3 Any PSoC 3 Device

CY_PSOC5 Any PSoC 5 Device

Variable Attributes

Define Description

CY_NOINIT Specifies that a variable should be placed into uninitialized data section that
prevents this variable from being initialized to zero on startup.

For PSoC 3 no code is generated for this macro.

CY_ALIGN Specifies a minimum alignment (in bytes) for variables of the specified type.

CY_PACKED,
CY_PACKED_ATTR

Attached to an enum, struct, or union type definition, specified that the minimum
required memory be used to represent the type.

Example:
 CYPACKED typedef struct {

 uint8 freq;

 uint8 absolute;

 } CYPACKED_ATTR imoTrim;

 Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 14

Define Description

CY_INLINE Specifies that compiler can perform inline expansion: insert the function code at
the address of each function call.

Instance APIs

General APIs

Most components have an instance-specific set of the APIs that allow you to initialize, enable and disable

the component. These functions are listed below generically. Refer to the individual datasheet for specific

information.

`=instance_name`_InitVar

Description: This global variable Indicates whether the component has been initialized. The
variable is initialized to 0 and set to 1 the first time _Start() is called. This allows the
component to restart without reinitialization after the first call to the _Start() routine.

If reinitialization of the component is required, then the _Init() function can be called
before the _Start() or _Enable() function.

void `=instance_name`_Start (void)

Description: This function intended to start component operation. The _Start() sets the _initVar
variable, calls the _Init function, and then calls the _Enable function.

void `=instance_name`_Stop (void)

Description: Disables the component operation.

void `=instance_name`_Init (void)

Description: Initializes component's parameters to those set in the customizer placed on the
schematic. All registers will be reset to their initial values. This reinitializes the
component. Usually called in _Start().

void `=instance_name`_Enable (void)

Description: Enables the component block operation.

Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 15

Low Power APIs

Most components have an instance-specific set of low power APIs that allow you to put the component

into its low power state. These functions are listed below generically. Refer to the individual datasheet for

specific information regarding register retention information if applicable.

void `=instance_name`_Sleep (void)

Description: The _Sleep() function checks to see if the component is enabled and saves that
state. Then it calls the _Stop() function and calls _SaveConfig() function to save the
user configuration.

• PSoC 3/PSoC 5LP: Call the _Sleep() function before calling the
CyPmSleep() or the CyPmHibernate() function.

void `=instance_name`_Wakeup (void)

Description: The _Wakeup() function calls the _RestoreConfig() function to restore the user
configuration. If the component was enabled before the _Sleep() function was
called, the _Wakeup() function will re-enable the component.

Side Effects: Calling the _Wakeup() function without first calling the _Sleep() or _SaveConfig()
function may produce unexpected behavior.

void `=instance_name`_SaveConfig(void)

Description: This function saves the component configuration. This will save non-retention
registers. This function will also save the current component parameter values, as
defined in the Configure dialog or as modified by appropriate APIs. This function is
called by the _Sleep() function.

void `=instance_name`_RestoreConfig(void)

Description: This function restores the component configuration. This will restore non-retention
registers. This function will also restore the component parameter values to what
they were prior to calling the _Sleep() function.

Side Effects: Calling this function without first calling the _Sleep() or _SaveConfig() function may
produce unexpected behavior.

PSoC Creator Generated Defines

PSoC Creator generates the following macros in the cyfitter.h file.

Project Type

The following are defines for project type (from Project > Build Settings):

◼ CYDEV_PROJ_TYPE

◼ CYDEV_PROJ_TYPE_BOOTLOADER

◼ CYDEV_PROJ_TYPE_LOADABLE

◼ CYDEV_PROJ_TYPE_MULTIAPPBOOTLOADER

 Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 16

◼ CYDEV_PROJ_TYPE_STANDARD

◼ CYDEV_PROJ_TYPE_LOADABLEANDBOOTLOADER

Chip Configuration Mode

The following are defines for chip configuration mode (from System DWR). Options vary by device:

All

◼ CYDEV_CONFIGURATION_MODE

◼ CYDEV_CONFIGURATION_MODE_COMPRESSED

◼ CYDEV_CONFIGURATION_MODE_DMA

◼ CYDEV_CONFIGURATION_MODE_UNCOMPRESSED

◼ CYDEV_DEBUGGING_ENABLE or
CYDEV_PROTECTION_ENABLE (Debugging or protection enabled. Mutually exclusive.)

PSoC 3

◼ CYDEV_CONFIGURATION_CLEAR_SRAM (Startup code clear SRAM?)

PSoC 3 and PSoC 5LP

◼ CYDEV_CONFIGURATION_COMPRESSED (Configuration data compressed?)

◼ CYDEV_CONFIGURATION_DMA (Configuration data loaded via DMA?)

◼ CYDEV_CONFIGURATION_ECC (Configuration data stored in ECC?)

◼ CYDEV_CONFIG_FASTBOOT_ENABLED (Device startup at 48 MHz at boot? If not, 12 MHz.)

◼ CYDEV_INSTRUCT_CACHE_ENABLED (Instruction cache enabled?)

◼ CYDEV_DMA_CHANNELS_AVAILABLE (Number of DMA channels available for configuration.)

◼ CYDEV_ECC_ENABLE (ECC enabled?)

◼ CYDEV_DEBUGGING_XRES (Optional XRES pin enabled as XRES?)

PSoC 5LP

◼ CYDEV_USE_BUNDLED_CMSIS (Include the CMSIS standard library.)

Debugging Mode

The following are defines for debugging mode (from System DWR):

◼ CYDEV_DEBUGGING_DPS

◼ CYDEV_DEBUGGING_DPS_Disable

◼ CYDEV_DEBUGGING_DPS_JTAG_4

◼ CYDEV_DEBUGGING_DPS_JTAG_5

◼ CYDEV_DEBUGGING_DPS_SWD

◼ CYDEV_DEBUGGING_DPS_SWD_SWV

Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 17

Chip Protection Mode

The following are defines for chip protection mode (from System DWR):

◼ CYDEV_DEBUG_PROTECT

◼ CYDEV_DEBUG_PROTECT_KILL

◼ CYDEV_DEBUG_PROTECT_OPEN

◼ CYDEV_DEBUG_PROTECT_PROTECTED

Stack and Heap

The following are defines for the number of bytes allocated to the stack and heap (from System DWR).

These are only for PSoC 5LP.

◼ CYDEV_HEAP_SIZE

◼ CYDEV_STACK_SIZE

Voltage Settings

The following are defines for voltage settings (from System DWR). Options vary by device:

◼ CYDEV_VARIABLE_VDDA

◼ CYDEV_VDDA

◼ CYDEV_VDDA_MV

◼ CYDEV_VDDD

◼ CYDEV_VDDD_MV

◼ CYDEV_VDDIO0

◼ CYDEV_VDDIO0_MV

◼ CYDEV_VDDIO1

◼ CYDEV_VDDIO1_MV

◼ CYDEV_VDDIO2

◼ CYDEV_VDDIO2_MV

◼ CYDEV_VDDIO3

◼ CYDEV_VDDIO3_MV

◼ CYDEV_VIO0

◼ CYDEV_VIO0_MV

◼ CYDEV_VIO1

◼ CYDEV_VIO1_MV

◼ CYDEV_VIO2

◼ CYDEV_VIO2_MV

◼ CYDEV_VIO3

◼ CYDEV_VIO3_MV

 Standard Types, APIs, and Defines

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 18

System Clock Frequency

The following are defines for system clock frequency (from Clock DWR):

PSoC 3 and PSoC 5

◼ BCLK__BUS_CLK__HZ

◼ BCLK__BUS_CLK__KHZ

◼ BCLK__BUS_CLK__MHZ

JTAG/Silicon ID

The following is the define for JTAG/Silicon ID for the current device:

◼ CYDEV_CHIP_JTAG_ID

IP Block Information

PSoC Creator generates the following macros in the cyfitter.h file for the IP blocks that exist on the

current device:

#define CYIPBLOCK_<BLOCK NAME>_VERSION <version>

For example:

#define CYIPBLOCK_P3_TIMER_VERSION 0

#define CYIPBLOCK_P3_USB_VERSION 0

#define CYIPBLOCK_P3_VIDAC_VERSION 0

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 19

3 Clocking

PSoC Creator Clocking Implementation

PSoC devices supported by PSoC Creator have flexible clocking capabilities. These clocking capabilities

are controlled in PSoC Creator by selections within the Design-Wide Resources settings, connectivity of

clocking signals on the design schematic, and API calls that can modify the clocking at runtime. The

clocking API is provided in the CyLib.c and CyLib.h files.

This section describes how PSoC Creator maps clocks onto the device and provides guidance on

clocking methodologies that are optimized for the PSoC architecture.

The System Clock consolidates Bus Clock (BUS_CLK) on PSoC 3/PSoC 5LP devices. The Master Clock

consolidates Master Clock (MASTER_CLK) on PSoC 3/PSoC 5LP devices.

Overview

The clock system includes these clock resources:

◼ Four internal clock sources increase system integration:

 3 to 48 MHz Internal Main Oscillator (IMO) ±1% at 3 MHz

 1 kHz, 33 kHz, 100 kHz Internal Low Speed Oscillator (ILO) outputs

 USB Clock Domain, sourced from IMO, MHz External Crystal Oscillator (MHzECO), and

Digital System Interconnect (DSI)

 24 to 67 MHz fractional Phase-Locked Loop (PLL) sourced from IMO, MHzECO, and DSI

◼ Clock generated using a DSI signal from an external I/O pin or other logic

◼ Two external clock sources provide high precision clocks:

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 20

 4 to 25 MHzECO

 32.768 kHz External Crystal Oscillator (kHzECO) for Real Time Clock (RTC)

◼ Dedicated 16-bit divider for bus clock

◼ Eight individually sourced 16-bit clock dividers for the digital system peripherals

◼ Four individually sourced 16-bit clock dividers with skew for the analog system peripherals

◼ IMO has a USB mode that synchronizes to USB host traffic, requiring no external crystal for USB.
(USB equipped parts only)

Clock Connectivity

The PSoC architecture includes flexible clock generation logic. Refer to the Technical Reference Manual

for a detailed description of all the clocking sources available in a particular device. The usage of these

various clocking sources can be categorized by how those clocks are connected to elements of a design.

System Clock

This is a special clock. It is closely related to Master Clock. For most designs, Master Clock and System

Clock will be the same frequency and considered to be the same clock. These must be the highest speed

clocks in the system. The CPU will be running off of System Clock and all the peripherals will

communicate to the CPU and DMA using System Clock. When a clock is synchronized, it is synchronized

to Master Clock. When a pin is synchronized it is synchronized to System Clock.

Global Clock

This is a clock that is placed on one of the global low skew digital clock lines. This also includes System

Clock. When a clock is created using a Clock component, it will be created as a global clock. This clock

must be directly connected to a clock input or may be inverted before connection to a clock input. Global

clock lines connect only to the clock input of the digital elements in PSoC. If a global clock line is

connected to something other than a clock input (that is, combinatorial logic or a pin), then the signal is

not sent using low skew clock lines.

Routed Clock

Any clock that is not a global clock is a routed clock. This includes clocks generated by logic (with the

exception of a single inverter) and clocks that come in from a pin.

Clock Synchronization

Each clock in a PSoC device is either synchronous or asynchronous. This is in reference to System Clock

and Master Clock. PSoC is designed to operate as a synchronous system. This was done to enable

communication between the programmable logic and either the CPU or DMA. If these are not

synchronous to a common clock, then any communication requires clocking crossing circuitry. Generally,

asynchronous clocking is not supported except for PLD logic that does not interact with the CPU system.

Synchronous Clock (PSoC 3/ PSoC 5LP)

Examples of synchronous clocks include:

◼ Global clock with sync to Master Clock option set. This option is set by default on the Advanced
tab of the Clock component Configure dialog.

◼ Clock from an input pin with the "Input Synchronized" option selected. This option is set by default
on the Input tab of the Pins component Configure dialog.

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 21

◼ Clock derived combinatorially from signals that were all generated from registers that are clocked
by synchronous clocks.

Asynchronous Clock (PSoC 3/ PSoC 5LP)

An asynchronous clock is any clock that is not synchronous. Some examples are:

◼ Any signal coming in from the Digital System Interconnect (DSI) other than a synchronized pin.

These signals must be considered asynchronous because their timing is not guaranteed. This
includes:

 What would normally be a global clock (if connected directly to a clock input) that is fed

through logic before being used as a clock

 Fixed function block outputs (that is, Counter, Timer, PWM)

 Digital signals from the analog blocks

◼ Global clock without the sync option set

◼ Clock from an input pin with Input Synchronized not selected

◼ Clock that is combinatorially created using any asynchronous signal

Making Signals Synchronous (PSoC 3/ PSoC 5LP)

Depending on the source of the clock signal, it can be made synchronous using different methods:

◼ An asynchronous global clock can be made synchronous by checking the Sync with

MASTER_CLK option in the Clock component Configure dialog (this is the default selection).

◼ A routed clock coming from a pin can be made synchronous by checking the Input
Synchronized option in the Pins component Configure dialog (this is the default selection, under
the Pins tab).

◼ Any signal can be made synchronous by using the Sync component and a synchronous clock as

the clock signal.

When synchronizing a signal:

◼ The synchronizing clock must be at least 2x the frequency of the signal being synchronized. If this
rule is violated, then incoming clock edges can be missed and therefore not reflected in the
resulting synchronized clock.

◼ The clock signal output will have all its transitions on the rising edge of the synchronizing clock.

◼ The clock signal output will have its edges moved from their original timing.

◼ The clock signal output will have variation in the high and low pulse widths unless the incoming
clock and the synchronizing clock are directly related to each other.

The following example shows two clocks that have been synchronized to System Clock. Clock_1 has

exactly 2x the period of System Clock. Clock_2 has a period of approximately 3x the period of System

Clock. That results in the high and low pulse widths varying between 1 and 2 System Clock periods. In

both cases all transitions occur at the rising edge of System Clock.

Clock _ 1

Clock _ 2

System Clock

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 22

Routed Clock Implementation

The clocking implementation in PSoC directly connects global clock signals to the clock input of clocked

digital logic. This applies to both synchronous and asynchronous clocks. Since global clocks are

distributed on low skew clock lines, all clocked elements connected to the same global clock will be

clocked at the same time.

Routed clocks are distributed using the general digital routing fabric. This results in the clock arriving at

each destination at different times. If that clock signal was used directly as the clock, then it would force

the clock to be considered an asynchronous clock. This is because it cannot be guaranteed to transition

at the rising edge of System Clock. This can also result in circuit failures if the output of a register clocked

by an early arriving clock is used by a register clocked by a late arriving version of the same clock.

Under some circumstances, PSoC Creator can transform a routed clock circuit into a circuit that uses a

global clock. If all the sources of a routed clock can be traced back to the output of registers that are

clocked by common global clocks, then the circuit is transformed automatically by PSoC Creator. The

cases where this is possible are:

◼ All signals are derived from the same global clock. This global clock can be asynchronous or
synchronous.

◼ All signals are derived from more than one synchronous global clock. In this case, the common
global clock is System Clock.

The clocking implementation in PSoC includes a built-in edge detection circuit that is used in this

transformation. This does not use PLD resources to implement. The following shows the logical

implementation and the resulting clock timing diagram.

This diagram shows that the resulting clock occurs synchronous to the global clock on the first clock after

a rising edge of the routed clock.

When analyzing the design to determine the source of a routed clock, another routed clock that was

transformed may be encountered. In that case, the global clock used in that transformation is considered

the source clock for that signal.

The clock transformation used for every routed clock is reported in the report file. This file is located in the

Workspace Explorer under the Results tab after a successful build. The details are shown under the

Latch

(Transparent

when Low)

GlobalClk

(Effective

Clock)

RoutedClk

(Enable)

Clk

GlobalClk

RoutedClk

Clk

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 23

"Initial Mapping" heading. Each routed clock will be shown with the "Effective Clock" and the "Enable

Signal". The "Effective Clock" is the global clock that is used and the "Enable Signal" is the routed clock

that is edge detected and used as the enable for that clock.

Example with a Divided Clock

A simple divided clock circuit can be used to observe how this transformation is done. The following circuit

clocks the first flip-flop (cydff_1) with a global clock. This generates a clock that is divided by 2 in

frequency. That signal is used as a routed clock that clocks the next flip-flop (cydff_2).

The report file indicates that one global clock has been used and that the single routed clock has been

transformed using the global clock as the effective clock.

The resulting signals generated by this circuit are as follows.

It may appear that the Div4 signal is generated by the falling edge of the Div2 signal. This is not the case.

The Div4 signal is generated on the first Clock_1 rising edge following a rising edge on Div2.

Clock_1

Div2

Div4

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 24

Example with a Clock from a Pin

In the following circuit, a clock is brought in on a pin with synchronization turned on. Since

synchronization of pins is done with System Clock, the transformed circuit uses System Clock as the

Effective Clock and uses the rising edge of the pin as the Enable Signal.

If input synchronization was not enabled at the pin, there would not be a global clock to use to transform

the routed clock, and the routed clock would be used directly.

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 25

Example with Multiple Clock Sources

In this example, the routed clock is derived from flip-flops that are clocked by two different clocks. Both of

these clocks are synchronous, so System Clock is the common global clock that becomes the Effective

Clock.

If either of these clocks had been asynchronous, then the routed clock would have been used directly.

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 26

Overriding Routed Clock Transformations

The automatic transformation that PSoC Creator performs on routed clocks is generally the

implementation that should be used. There is however a method to force the routed clock to be used

directly. The UDBClkEn component configured in Async mode will force the clock used to be the routed

clock, as shown in the following circuit.

Using Asynchronous Clocks

Asynchronous clocks can be used with PLD logic. However, they are not automatically supported by

control registers, status registers and datapath elements because of the interaction with the CPU those

elements have. Most Cypress library components will only work with synchronous clocks. They

specifically force the insertion of a synchronizer automatically if the clock provided is asynchronous.

Components that are designed to work with asynchronous clocks such as the SPI Slave will specifically

describe how they handle clocking in their datasheet.

If an asynchronous clock is connected directly to something other than PLD logic, then a Design Rule

Check (DRC) error is generated. For example, if an asynchronous pin is connected to a control register

clock, a DRC error is generated.

As stated in the error message, the error can be removed by using a UDBClkEn component in async

mode. That won’t remove the underlying synchronization issue, but it will allow the design to override the

error if the design has handled synchronization in some other way.

Clock Crossing

Multiple clock domains are commonly needed in a design. Often these multiple domains do not interact

and therefore clocking crossings do not occur. In the case where signals generated in one clock domain

need to be used in another clock domain, special care must be taken. There is the case where the two

clock domains are asynchronous from each other and the case where both clock domains are

synchronous to System Clock.

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 27

When both clocks are synchronous to System Clock, signals from the slower clock domain can be freely

used in the other clock domain. In the other direction, care must be taken that the signals from the faster

clock domain are active for a long enough period that they will be sampled by the slower clock domain. In

both directions the timing constraints that must be met are based on the speed of System Clock not the

speed of either of the clock domains.

The only guarantee between the clock domains is that their edges will always occur on a rising edge of

System Clock. That means that the rising edges of the two clock domains can be as close as a single

System Clock cycle apart. This is true even when the clock domains are multiples of each other, since

their clock dividers are not necessarily aligned. If combinatorial logic exists between the two clock

domains, a flip-flop may need to be inserted to keep from limiting the frequency of System Clock

operation. By inserting the flip-flop, the crossing from one clock domain to the other is a direct flip-flop to

flip-flop path.

When the clock domains are unrelated to each other, a synchronizer must be used between the clock

domains. The Sync component can be used to implement the synchronization function. It should be

clocked by the destination clock domain.

The Sync component is implemented using a special mode of the status register that implements a

double synchronizer. The input signal must have a pulse width of at least the period of the sampling clock.

The exact delay to go through the synchronizer will vary depending on the alignment of the incoming

signal to the synchronizing clock. This can vary from just over one clock period to just over two clock

periods. If multiple signals are being synchronized, the time difference between two signals entering the

synchronizer and those same two signals at the output can change by as much as one clock period,

depending on when each is successfully sampled by the synchronizer.

Gated Clocks

Global clocks should not be used for anything other than directly clocking a circuit. If a global clock is

used for logic functionality, the signal is routed using an entirely different path without guaranteed timing.

A circuit such as the following should be avoided since timing analysis cannot be performed.

This circuit is implemented with a routed clock, has no timing analysis support, and is prone to the

generation of glitches on the clock signal when the clock is enabled and disabled.

The following circuit implements the equivalent function and is supported by timing analysis, only uses

global clocks, and has no reliability issues. This circuit does not gate the clock, but instead logically

enables the clocking of new data or maintains the current data.

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 28

If access to a clock is needed, for example to generate a clock to send to a pin, then a 2x clock should be

used to clock a toggle flip-flop. The output of that flip-flop can then be used with the associated timing

analysis available.

Fixed-Function Clocking

On the schematic, the clock signals sent to fixed-function peripherals and to UDB-based peripherals

appear to be the same clock. However, the timing relationship between the clock signals as they arrive at

these different peripheral types is not guaranteed. Additionally the routing delay for the data signals is not

guaranteed. Therefore when fixed-function peripherals are connected to signals in the UDB array, the

signals must be synchronized as shown in the following example. No timing assumptions should be made

about signals coming from fixed-function peripherals.

UDB-Based Clocking

If the component allows asynchronous clocks, you may use any clock input frequency within the device's

frequency range. If the component requires synchronization to the bus clock, then when using a routed

clock for the component, the frequency of the routed clock cannot exceed one half the routed clock’s

source clock frequency.

◼ If the routed clock is synchronous to the bus clock, then it is one half the bus clock.

◼ If the routed clock is synchronous to one of the clock dividers, its maximum is one half of that
clock rate.

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 29

Changing Clocks in Run-time

Impact on Components Operation

The components with internal clocks are directly impacted by the change of the system clock frequencies

or sources. The components clock frequencies obtained using design-time dividers. The run-time change

of components clock source will correspondingly change the internal component clock. Refer to the

component datasheet for the details.

CyDelay APIs

The CyDelay APIs implement simple software-based delay loops. The loops compensate for system clock

frequency. The CyDelayFreq() function must be called in order to adjust CyDelay(), CyDelayUs() and

CyDelayCycles() functions to the new system clock value.

Cache Configuration

If the CPU clock frequency increases during device operation, the number of clock cycles cache will wait

before sampling data coming back from Flash should be adjusted. If the CPU clock frequency decreases,

the number of clock cycles can be also adjusted to improve CPU performance. See

CyFlash_SetWaitCycles() function description for more information.

Low Voltage Analog Boost Clocks

When the operating voltage (Vdda) of a PSoC device drops below 4.0 V, the analog pumps for the analog

routing switches must be enabled by calling the SetAnalogRoutingPumps() function with the

corresponding parameter. When Vdda rises above 4.0 V, the analog pumps for the analog routing

switches must be disabled on PSoC 3/PSoC 5LP devices. It is the user's responsibility to monitor the

Vdda level at run-time and enable/disable the pumps as appropriate.

The analog pumps for the analog routing switches are configured on device startup based on the Vdda

and Variable Vdda design-time options. The Variable Vdda option in the System tab of the PSoC

Creator Design-Wide Resources (DWR) file is added to allow for designs in which the value of Vdda is

expected to vary at runtime. If Variable Vdda is enabled, the SetAnalogRoutingPumps() function

described above will be generated. If Vdda < 4.0 V, the routing pumps will be automatically enabled on

reset.

Additionally, on PSoC 3/PSoC 5 LP devices, analog positive pumps of the SC-blocks require a boost

clock input in order to keep performance within specification when Vdda is below 2.7 V. Between 2.7 V

and 4.0 V, the boost is optional and may improve performance. Above 4.0 V, the boost must not be used.

If Vdda < 2.7 V or Variable Vdda is selected, a design-wide analog clock resource (ScBoostClk) is

created to be used as a boost clock source for analog blocks. This clock is created with a desired

frequency of 10 MHz. This means that one of the system clock sources (MASTER_CLK, PLL_OUT,

XTAL, etc) should have a value which can produce a 10-12 MHz frequency via an integer divide. In order

to ensure that sufficient current is provided to the SC-block by the pump, this value cannot be changed.

In previous releases of PSoC Creator, an analog clock resource was silently reserved for every

component instance of the requiring the boost (TIA, Mixer, PGA, and PGA_Inv). This means that analog

designs would prematurely exhaust available resources when Vdda was low. The design-wide clock

allows for optimal resource usage by permitting all SC-block-based components to share a single clock

resource.

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 30

Components that are implemented in SC-blocks (TIA, Mixer, PGA, and PGA_Inv) will be initialized based

on Vdda and Variable Vdda design-time options. The CySetScPumps() function can be used to

enable/disable positive pumps and boost clock at run-time if operating voltage (Vdda) drops below the

2.7 V level. As with the switch pumps, it is the user's responsibility to monitor the Vdda level and call this

function as appropriate.

The dependency between Vdda and Variable Vdda values configured in the System tab of the PSoC

Creator Design-Wide Resources (DWR) file and their impact on design behavior is explained in the

following table.

Vdda < 2.7 V ≥ 2.7 V ≥ 2.7 V

Variable Vdda Always Enabled Enabled Disabled

Routing pumps enabled on reset Yes If Vdda < 4.0 V If Vdda < 4.0 V

ScBoostClk clock created
(PSoC 3/PSoC 5LP Only)

Yes Yes No

ScBoostClk started on reset

(PSoC 3/PSoC 5LP Only)

Yes No No

Note The previous versions SC-block components (TIA, Mixer, PGA and, and PGA_Inv) will continue to

use a dedicated local clock and the new Low Voltage Analog Boost Clocks APIs will not affect those

clocks.

APIs

There is one API used for all devices: the SetAnalogRoutingPumps() function. Then, there is a set of APIs

used for PSoC 3 and PSoC 5LP devices.

void SetAnalogRoutingPumps(uint8 enabled)

Description: Enables or disables the analog pumps feeding analog routing switches. Intended
to be called at startup, based on the Vdda system configuration; may be called
during operation when the user informs us that the Vdda voltage crossed the
pump threshold.

Parameters: enabled:

• 1: Enable the pumps.

• 0: Disable the pumps.

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 31

uint8 CyPLL_OUT_Start(uint8 wait)

Description: Enables the PLL. Optionally waits for it to become stable. Waits at least 250 us or
until it is detected that the PLL is stable.

Parameters: wait:

• 0: Return immediately after configuration

• 1: Wait for PLL lock or timeout

Return Value: Status

• CYRET_SUCCESS - Completed successfully

• CYRET_TIMEOUT - Timeout occurred without detecting a stable clock. If
the input source of the clock is jittery, then the lock indication may not
occur. However, after the timeout has expired the generated PLL clock
can still be used.

Side Effects and
Restrictions:

If wait is enabled, this function uses the Fast Time Wheel (FTW) to time the wait.
Any other use of the FTW will be stopped during the period of this function and
then restored.

This function uses the 100 KHz ILO. If the 100 KHz ILO is not enabled, this
function will enable it for the duration of this function execution.

No changes to the setup of the ILO, FTW, Central Time Wheel (CTW) or Once
Per Second interrupt may be made by interrupt routines for the duration of this
function execution. The current operation of the ILO, CTW and Once Per Second
interrupt are maintained during the operation of this function, provided the reading
of the Power Manager Interrupt Status Register is only done using the
CyPmReadStatus() function.

void CyPLL_OUT_Stop()

Description: Disables the PLL.

void CyPLL_OUT_SetPQ(uint8 pDiv, uint8 qDiv, uint8 current)

Description: Sets the P and Q dividers and the charge pump current. The Frequency Out will
be P/Q * Frequency In. The PLL must be disabled before calling this function.

Parameters: P: Valid range [8 - 255]

 Q: Valid range [1 - 16]. Input Frequency / Q must be in the range of 1 MHz to
3 MHz.

 current: Valid range [1 - 7]. Charge pump current in uA. Refer to the device TRM
and datasheet for more information.

Side Effects and
Restrictions:

If the CPU clock frequency increases during device operation, call
CyFlash_SetWaitCycles() with the appropriate parameter to adjust the number of
clock cycles cache will wait before sampling data coming back from Flash. If the
CPU clock frequency decreases, you can call CyFlash_SetWaitCycles() to
improve CPU performance. See "CyFlash_SetWaitCycles()" for more information.

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 32

void CyPLL_OUT_SetSource(uint8 source)

Description: Sets the input clock source to the PLL. The PLL must be disabled before calling
this function.

Parameters: source: One of the three available PLL clock sources

Define Source

CY_PLL_SOURCE_IMO IMO

CY_PLL_SOURCE_XTAL MHz Crystal

CY_PLL_SOURCE_DSI DSI

Side Effects and
Restrictions:

If the CPU clock frequency increases during device operation, call
CyFlash_SetWaitCycles() with the appropriate parameter to adjust the number of
clock cycles cache will wait before sampling data coming back from Flash. If the
CPU clock frequency decreases, you can call CyFlash_SetWaitCycles() to
improve CPU performance. See "CyFlash_SetWaitCycles()" for more information.

void CyIMO_Start(uint8 wait)

Description: Enables the IMO. Optionally waits at least 6us for it to settle.

Parameters: wait:

• 0: Return immediately after configuration

• 1: Wait for at least 6us for the IMO to settle

Side Effects and
Restrictions:

If wait is enabled, this function uses the FTW to time the wait. Any other use of
the FTW will be stopped during the period of this function and then restored.

This function uses the 100 KHz ILO. If the 100 KHz ILO is not enabled, this
function will enable it for the duration of this function execution.

No changes to the setup of the ILO, FTW, CTW, or Once Per Second interrupt
may be made by interrupt routines for the duration of this function execution. The
current operation of the ILO, CTW, and Once Per Second interrupt are
maintained during the operation of this function, provided the reading of the
Power Manager Interrupt Status Register is only done using the
CyPmReadStatus() function.

void CyIMO_Stop()

Description: Disables the IMO.

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 33

void CyIMO_SetFreq(uint8 freq)

Description: Sets the frequency of the IMO. Changes may be made while the IMO is running.

Parameters: freq: Frequency of IMO operation

Define Frequency

CY_IMO_FREQ_3MHZ 3 MHz

CY_IMO_FREQ_6MHZ 6 MHz

CY_IMO_FREQ_12MHZ 12 MHz

CY_IMO_FREQ_24MHZ 24 MHz

CY_IMO_FREQ_48MHZ 48 MHz

CY_IMO_FREQ_62MHZ 62.6 MHz

CY_IMO_FREQ_74MHZ 74.7 MHz

CY_IMO_FREQ_USB 24 MHz (Trimmed for USB operation)

Side Effects and
Restrictions:

If the CPU clock frequency increases during device operation, call
CyFlash_SetWaitCycles() with the appropriate parameter to adjust the number of
clock cycles cache will wait before sampling data coming back from Flash. If the
CPU clock frequency decreases, you can call CyFlash_SetWaitCycles() to
improve CPU performance. See "CyFlash_SetWaitCycles()" for more information.

When the USB setting is chosen, the USB clock locking circuit is enabled.
Otherwise this circuit is disabled. The USB block must be powered before
selecting the USB setting.

void CyIMO_SetSource(uint8 source)

Description: Sets the source of the clock output from the IMO block. The output from the IMO
is by default the IMO itself. Optionally the MHz Crystal or a DSI input can be the
source of the IMO output instead.

Parameters: source: One of the three available IMO output sources

Define Source

CY_IMO_SOURCE_IMO IMO

CY_IMO_SOURCE_XTAL MHz Crystal

CY_IMO_SOURCE_DSI DSI

Side Effects and
Restrictions:

If the CPU clock frequency increases during device operation, call
CyFlash_SetWaitCycles() with the appropriate parameter to adjust the number of
clock cycles cache will wait before sampling data coming back from Flash. If the
CPU clock frequency decreases, you can call CyFlash_SetWaitCycles() to
improve CPU performance. See "CyFlash_SetWaitCycles()" for more information.

void CyIMO_EnableDoubler()

Description: Enables the IMO doubler. The 2x frequency clock is used to convert a 24 MHz
input to a 48 MHz output for use by the USB block.

void CyIMO_DisableDoubler()

Description: Disables the IMO doubler.

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 34

void CyBusClk_SetDivider(uint16 divider)

Description: Sets the divider value used to generate Bus Clock.

Parameters: divider: Valid range [0-65535]. The clock will be divided by this value + 1. For
example to divide by 2 this parameter should be set to 1.

Side Effects and
Restrictions:

If the CPU clock frequency increases during device operation, call
CyFlash_SetWaitCycles() with the appropriate parameter to adjust the number of
clock cycles cache will wait before sampling data coming back from Flash. If the
CPU clock frequency decreases, you can call CyFlash_SetWaitCycles() to
improve CPU performance. See "CyFlash_SetWaitCycles()" for more information.

void CyCpuClk_SetDivider(uint8 divider)

Description: Sets the divider value used to generate the CPU Clock. Applies to PSoC 3 only.

Parameters: divider: Valid range [0-15]. The clock will be divided by this value + 1. For
example to divide by 2 this parameter should be set to 1.

Side Effects and
Restrictions:

If the CPU clock frequency increases during device operation, call
CyFlash_SetWaitCycles() with the appropriate parameter to adjust the number of
clock cycles cache will wait before sampling data coming back from Flash. If the
CPU clock frequency decreases, you can call CyFlash_SetWaitCycles() to
improve CPU performance. See "CyFlash_SetWaitCycles()" for more information.

void CyMasterClk_SetSource(uint8 source)

Description: Sets the source of the master clock.

Parameters: source: One of the four available Master clock sources

Define Source

CY_MASTER_SOURCE_IMO IMO

CY_MASTER_SOURCE_PLL PLL

CY_MASTER_SOURCE_XTAL MHz Crystal

CY_MASTER_SOURCE_DSI DSI

Side Effects and
Restrictions:

The current source and the new source must both be running and stable before
calling this function.

If the CPU clock frequency increases during device operation, call
CyFlash_SetWaitCycles() with the appropriate parameter to adjust the number of
clock cycles cache will wait before sampling data coming back from Flash. If the
CPU clock frequency decreases, you can call CyFlash_SetWaitCycles() to
improve CPU performance. See "CyFlash_SetWaitCycles()" for more information.

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 35

void CyMasterClk_SetDivider(uint8 divider)

Description: Sets the divider value used to generate Master Clock.

Parameters: divider: Valid range [0-255]. The clock will be divided by this value + 1. For
example to divide by 2 this parameter should be set to 1.

Side Effects and
Restrictions:

When changing the Master or Bus Clock divider value from div-by-n to div-by-1,
the first clock cycle output after the div-by-1 can be up to 4 ns shorter than the
final/expected div-by-1 period.

If the CPU clock frequency increases during device operation, call
CyFlash_SetWaitCycles() with the appropriate parameter to adjust the number of
clock cycles cache will wait before sampling data coming back from Flash. If the
CPU clock frequency decreases, you can call CyFlash_SetWaitCycles() to
improve CPU performance. See "CyFlash_SetWaitCycles()" for more information.

void CyUsbClk_SetSource(uint8 source)

Description: Sets the source of the USB clock.

Parameters: source: One of the four available USB clock sources

Define Source

CY_USB_SOURCE_IMO2X IMO 2x

CY_USB_SOURCE_IMO IMO

CY_USB_SOURCE_PLL PLL

CY_USB_SOURCE_DSI DSI

void CyILO_Start1K()

Description: Enables the ILO 1 KHz oscillator.

Note The ILO 1 KHz oscillator is always enabled by default, regardless of the
selection in the Clock Editor. Therefore, this API is only needed if the oscillator
was turned off manually.

void CyILO_Stop1K()

Description: Disables the ILO 1 KHz oscillator.

Note The ILO 1 KHz oscillator must be enabled if Sleep or Hibernate low power
mode APIs are expected to be used. For more information, refer to the Power
Management section of this document.

void CyILO_Start100K()

Description: Enables the ILO 100 KHz oscillator.

void CyILO_Stop100K()

Description: Disables the ILO 100 KHz oscillator.

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 36

void CyILO_Enable33K()

Description: Enables the ILO 33 KHz divider.

Note The 33 KHz clock is generated from the 100 KHz oscillator, so it must also
be running in order to generate the 33 KHz output.

void CyILO_Disable33K()

Description: Disables the ILO 33 KHz divider.

Note that the 33 KHz clock is generated from the 100 KHz oscillator, but this API
does not disable the 100 KHz clock.

void CyILO_SetSource(uint8 source)

Description: Sets the source of the clock output from the ILO block.

Parameters: source: One of the three available ILO output sources

Define Source

CY_ILO_SOURCE_100K ILO 100 KHz

CY_ILO_SOURCE_33K ILO 33 KHz

CY_ILO_SOURCE_1K ILO 1 KHz

uint8 CyILO_SetPowerMode(uint8 mode)

Description: Sets the power mode used by the ILO during power down. Allows for lower power
down power usage resulting in a slower startup time.

Parameters: mode:

Define Description

CY_ILO_FAST_START Faster start-up, internal bias left on when
powered down.

CY_ILO_SLOW_START Slower start-up, internal bias off when
powered down.

Return Value: Previous power mode

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 37

uint8 CyXTAL_Start(uint8 wait)

Description: Enables the MHz crystal.

Waits until the XERR bit is low (no error) for a millisecond or until the number of
milliseconds specified by the wait parameter has expired.

Parameters: wait: Valid range [0-255]. This is the timeout value in milliseconds. The
appropriate value is crystal specific.

Return Value: Status

CYRET_SUCCESS - Completed successfully

CYRET_TIMEOUT - Timeout occurred without detecting a low value on XERR.

Side Effects and
Restrictions:

If wait is enabled (non-zero wait), this function uses the FTW to time the wait. Any
other use of the FTW will be stopped during the period of this function and then
restored.

This function also uses the 100 KHz ILO. If the 100 KHz is not enabled, this
function will enable it for the duration of this function execution.

No changes to the setup of the ILO, FTW, CTW, or Once Per Second interrupt
may be made by interrupt routines for the duration of this function execution. The
current operation of the ILO, CTW, and Once Per Second interrupt are
maintained during the operation of this function provided the reading of the Power
Manager Interrupt Status Register is only done using the CyPmReadStatus()
function.

void CyXTAL_Stop()

Description: Disables the megahertz crystal oscillator.

void CyXTAL_EnableErrStatus()

Description: Enables the generation of the XERR status bit for the megahertz crystal.

void CyXTAL_DisableErrStatus()

Description: Disables the generation of the XERR status bit for the megahertz crystal.

uint8 CyXTAL_ReadStatus()

Description: Reads the XERR status bit for the megahertz crystal. This status bit is a sticky
clear on read value.

Return Value: Status: 0: No error, 1: Error

void CyXTAL_EnableFaultRecovery()

Description: Enables the fault recovery circuit which will switch to the IMO in the case of a fault
in the megahertz crystal circuit. The crystal must be up and running with the
XERR bit at 0, before calling this function to prevent immediate fault switchover.

 Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 38

void CyXTAL_DisableFaultRecovery()

Description: Disables the fault recovery circuit which will switch to the IMO in the case of a
fault in the megahertz crystal circuit.

void CyXTAL_SetStartup(uint8 setting)

Description: Sets the startup settings for the crystal.

Parameters: setting: Valid range [0-31]. Value is dependent on the frequency and quality of the
crystal being used. Refer to the device TRM and datasheet for more information.

void CyXTAL_SetFbVoltage(uint8 setting)

Description: Sets the feedback reference voltage to use for the crystal circuit.

Parameters: setting: Valid range [0-15]. Refer to the device TRM and datasheet for more
information.

Side Effects and
Restrictions:

The feedback reference voltage must be greater than the watchdog reference
voltage.

void CyXTAL_SetWdVoltage(uint8 setting)

Description: Sets the reference voltage used by the watchdog to detect a failure in the crystal
circuit.

Parameters: setting: Valid range [0-7]. Refer to the device TRM and datasheet for more
information.

Side Effects and
Restrictions:

The feedback reference voltage must be greater than the watchdog reference
voltage.

void CyXTAL_32KHZ_Start()

Description: Enables the 32 KHz Crystal Oscillator.

void CyXTAL_32KHZ_Stop()

Description: Disables the 32 KHz Crystal Oscillator.

uint8 CyXTAL_32KHZ_ReadStatus()

Description: Reads the two status bits for the 32 KHz oscillator.

Return Value: Status

Define Source

CY_XTAL32K_ANA_STAT Analog measurement

1: Stable

0: Not stable

Clocking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 39

uint8 CyXTAL_32KHZ_SetPowerMode(uint8 mode)

Description: Sets the power mode for the 32 KHz oscillator used during sleep mode. Allows for
lower power during sleep when there are fewer sources of noise. During active
mode the oscillator is always run in high power mode.

Parameters: mode:

• 0: High power mode

• 1: Low power mode during sleep

Return Value: Previous power mode

void CySetScPumps(uint8 enable)

Description: Starts/stops analog boost clock and configures SC-blocks positive pumps.

Parameters: enable:

• 1: Starts analog boost clock and enables positive pumps.

• 0: Disables positive pumps for enabled SC-blocks and stops analog boost
clock if all SC-blocks are disabled.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 40

4 Power Management

There is a full range of power modes supported by PSoC devices to control power consumption and the

amount of available resources. See the following table for the supported power modes.

Table 1. Power modes

Architecture PSoC 3 / PSoC 5LP

Family All

Active 

Alternate Active 

Sleep 

Deep Sleep

Hibernate 

Stop

PSoC 3/PSoC 5LP devices support the following power modes (in order of high to low power

consumption): Active, Alternate Active, Sleep, and Hibernate.

For the ARM-based devices (PSoC 5LP), an interrupt is required for the CPU to wake up. The Power

Management implementation assumes that wakeup time is configured with a separate component

(component-based wakeup time configuration) for an interrupt to be issued on terminal count. For more

information, refer to the "Wakeup Time Configuration" section.

All pending interrupts should be cleared before the device is put into low power mode, even if they are

masked.

The Power Management API is provided in the CyPm.c and CyPm.h files.

Implementation

Low Power Usage

PSoC 5 devices will not go into low power modes while the debugger is running.

For PSoC 3/PSoC 5LP devices, the power manager will not put the device into a low power state if the

system performance controller (SPC) is executing a command. The device will go into low power mode

after the SPC completes command execution. The SPC is used by Flash API, EEPROM and DieTemp

components. Please refer to the corresponding component datasheet for the more information.

Clock Configuration

There are a few device configuration requirements for proper low power mode entry and wakeup.

Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 41

◼ The clock system should be prepared before entering Sleep and Hibernate mode to ensure that it
will switch between Active modes and low power modes as expected.

◼ The CyPmSaveClocks() and CyPmRestoreClocks() functions are responsible for preparing clock
configuration before entering low power mode and after waking up to Active mode, respectively.
In general, CyPmSaveClocks() saves the configuration and sets the requirements for low power
mode entry. CyPmRestoreClocks() restores the clock configuration to its original state.

◼ The IMO is required to be the source for the Master clock. So, the IMO clock value is set
corresponding to the "Enable Fast IMO During Startup" option on the Design-Wide Resources
System Editor. If this option is enabled, the IMO clock frequency is set to 48 MHz; otherwise, is
set to 12 MHz.

Note The IMO value must be 12 MHz just before entering Sleep and Hibernate modes. The IMO

frequency is set to 12 MHz by CyPmSleep()/CyPmHibernate() just before entering the specified

low power mode (without correcting the number of wait cycles for the flash). The IMO frequency

is restored immediately on wakeup.

◼ The PLL and MHz ECO are turned off once the Master clock is sourced by IMO.

◼ The Bus and Master clock dividers are set to a divide-by-one value and the new value of flash

wait cycles is set to match the new value of the CPU frequency. Refer to the description of the
CyFlash_SetWaitCycles() function for more information.

The 1 KHz ILO must be enabled (it is always enabled by default, regardless of the selection in the Clock

Editor) for all devices for correct operation in Sleep and Hibernate low power modes. It is used to

measure the Hibernate/Sleep regulator settling time after a reset. During this time, the system ignores

requests to enter these modes. The hold-off delay is measured using rising edges of the 1 kHz ILO. The

terminal count is set by the Sleep Regulator Trim Register (PWRSYS_SLP_TR). Caution Do not modify

this register. Refer to the corresponding device Registers TRM for more information.

The 32.768-kHz external crystal oscillator (32kHzECO) provides precision timing with minimal power

consumption using an external 32.768-kHz watch crystal. The oscillator’s power mode during device’s

Sleep mode configured by the CyXTAL_32KHZ_SetPowerMode() function. By default, oscillator runs in

the high power mode.

Calling the CyPmSaveClocks() function will modify device clocking configuration. As a result, any

component that relies on clocking should not be used until calling the CyPmRestoreClocks() function,

which will restore the original clocking configuration. For information on component clocking

requirements, refer to the corresponding component datasheet.

Wakeup Time Configuration

There are three timers that can wake up a device from low power mode: CTW, FTW, and one pulse per

second (One PPS). Refer to the device TRM and datasheet for more information on these timers.

There are two ways of configuring wakeup time:

◼ Parameter-based wakeup time configuration is done by calling the CyPmSleep() and
CyPmAltAct() functions with desired parameters. This configuration method is available only for
the PSoC 3 devices.

◼ Component-based wakeup time configuration. The CTW wakeup interval is configured with the
Sleep Timer component. The one second interval is configured with the RTC component.

There is no wakeup time configuration available for the Hibernate mode.

It is important to keep in mind that it is only guaranteed that the first CTW and FTW intervals will be less

than specified. To make subsequent intervals to have nominal values, the corresponding timer is enabled

 Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 42

by the CyPmSleep() and CyPmAltAct() functions, and the timer left enabled. Note that some APIs can

also use this timer. This can cause the timer to always be enabled (the timer interval can be changed only

if the corresponding timer is disabled) before low power mode entry and hence the wakeup interval will

always be less than expected.

The CyPmReadStatus() function must be called just after wakeup with a corresponding parameter (for

example, with CY_PM_CTW_INT if the device is configured to wake up on CTW) to clear interrupt status

bits.

When CTW is used as a wakeup timer, the CyPmReadStatus() function must always be called (when

wakeup is configured in a parameter or component based method) after wakeup to clear the CTW

interrupt status bit. It is required for this function to be called within 1 ms (1 clock cycle of the ILO) after

the CTW event occurred.

Wakeup Source Configuration

You can configure which wakeup source may wake up the device from Alternate Active and Sleep low

power modes. The source is not configured to wake up the device; it just allows doing that. The

component associated with the wakeup source has to be properly configured to act as a wakeup source.

For PSoC 5LP devices, the interrupts associated with wakeup sources must also be enabled to also wake

up the CPU.

PSoC 3 Alternate Active Mode Specific Issues

◼ Any interrupt, whether it is enabled at the interrupt controller or not, will wake the device from
Alternate Active power mode.

◼ The edge detector is also bypassed, so the wakeup source is always level triggered.

◼ Directly connected DMA interrupts will not wake from this mode. They must be routed through the
DSI in order to generate a wakeup condition.

PSoC 5LP Specific Issues

For PSoC 5LP, the wakeup source is available for Sleep mode and is not available for Alternate Active

mode. In the case of Alternate Active mode, the wakeup source argument is ignored and any of the

available sources will wake the device.

For PSoC 5LP, the interrupt component connected to the wakeup source may not use the

"RISING_EDGE" detect option. Use the "LEVEL" option instead.

Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 43

Power Management APIs

void CyPmSaveClocks()

Description: This function is called in preparation for entering sleep or hibernate low power
modes. Saves all state of the clocking system that doesn’t persist during
sleep/hibernate or that needs to be altered in preparation for sleep/hibernate.
Shuts down all the digital and analog clock dividers for the active power mode
configuration.

Switches the master clock over to the IMO and shuts down the PLL and MHz
Crystal. The IMO frequency is set to either 12 MHz or 48 MHz to match the
Design-Wide Resources System Editor "Enable Fast IMO During Startup" setting.
The ILO and 32 KHz oscillators are not impacted. The current Flash wait state
setting is saved and the Flash wait state setting is set for the current IMO speed.

Note If the Master Clock source is routed through the DSI inputs, then it must be
set manually to another source before using the CyPmSaveClocks() /
CyPmRestoreClocks() functions.

Side Effects and
Restrictions:

All peripheral clocks will be off after this API method call.

void CyPmRestoreClocks()

Description: Restores any state that was preserved by the last call to CyPmSaveClocks. The
Flash wait state setting is also restored.

Note If the Master Clock source is routed through the DSI inputs, then it must be
set manually to another source before using the CyPmSaveClocks() /
CyPmRestoreClocks() functions.

The merge region could be used to process state when the megahertz crystal is
not ready after the hold-off timeout.

 Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 44

void CyPmAltAct(uint16 wakeupTime, uint16 wakeupSource)

Description: Puts the part into the Alternate Active (Standby) state. The Alternate Active state
can allow for any of the capabilities of the device to be active, but the operation of
this function is dependent on the CPU being disabled during the Alternate Active
state. The configuration code and the component APIs will configure the template
for the Alternate Active state to be the same as the Active state with the exception
that the CPU will be disabled during Alternate Active.

Note Before calling this function, you must manually configure the power mode of
the source clocks for the timer that is used as the wakeup timer.

Parameters: wakeupTime: Specifies a timer wakeup source and the frequency of that source.
For PSoC 5LP this parameter is ignored.

Define Time

PM_ALT_ACT_TIME_ONE_PPS One PPS: 1 second

PM_ALT_ACT_TIME_CTW_2MS CTW: 2 ms

PM_ALT_ACT_TIME_CTW_4MS CTW: 4 ms

PM_ALT_ACT_TIME_CTW_8MS CTW: 8 ms

PM_ALT_ACT_TIME_CTW_16MS CTW: 16 ms

PM_ALT_ACT_TIME_CTW_32MS CTW: 32 ms

PM_ALT_ACT_TIME_CTW_64MS CTW: 64 ms

PM_ALT_ACT_TIME_CTW_128MS CTW: 128 ms

PM_ALT_ACT_TIME_CTW_256MS CTW: 256 ms

PM_ALT_ACT_TIME_CTW_512MS CTW: 512 ms

PM_ALT_ACT_TIME_CTW_1024MS CTW: 1024 ms

PM_ALT_ACT_TIME_CTW_2048MS CTW: 2048 ms

PM_ALT_ACT_TIME_CTW_4096MS CTW: 4096 ms

PM_ALT_ACT_TIME_FTW(1-256) FTW: 10 µs to 2.56 ms

The PM_ALT_ACT_TIME_FTW() macro takes an argument that specifies how
many increments of 10 µs to delay. For PSoC 3 silicon the valid range of values is
1 to 256.

Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 45

CyPmAltAct (Continued)

Parameters: wakeupSource: Specifies a bitwise mask of wakeup sources. In addition, if a
wakeupTime has been specified, the associated timer will be included as a
wakeup source. The wakeup source configuration is restored before function exit.
For PSoC 5LP this parameter is ignored.

Define Source

PM_ALT_ACT_SRC_COMPARATOR0 Comparator 0

PM_ALT_ACT_SRC_COMPARATOR1 Comparator 1

PM_ALT_ACT_SRC_COMPARATOR2 Comparator 2

PM_ALT_ACT_SRC_COMPARATOR3 Comparator 3

PM_ALT_ACT_SRC_INTERRUPT Interrupt

PM_ALT_ACT_SRC_PICU PICU

PM_ALT_ACT_SRC_I2C I2C

PM_ALT_ACT_SRC_BOOSTCONVERTER Boost Converter

PM_ALT_ACT_SRC_FTW Fast Time Wheel

PM_ALT_ACT_SRC_VD High and Low Voltage
Detection

PM_ALT_ACT_SRC_CTW Central Time Wheel

PM_ALT_ACT_SRC_ONE_PPS One PPS

PM_ALT_ACT_SRC_LCD LCD

 Note CTW and One PPS wakeup signals are in the same mask bit. FTW and Low
Voltage Interrupt (LVI)/High Voltage Interrupt (HVI) wakeup signals are in the
same mask bit.

 When specifying a Comparator as the wakeupSource, use an instance specific
define that will track with the specific comparator for that instance. As an example,
for a Comparator instance named "MyComp" the value to OR into the mask is:
MyComp_ctComp__CMP_MASK.

When CTW, FTW, or One PPS is used as a wakeup source, the
CyPmReadStatus function must be called upon wakeup, with the corresponding
parameter. Refer to the CyPmReadStatus API for more information.

 Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 46

void CyPmSleep(uint8 wakeupTime, uint16 wakeupSource)

Description: Puts the part into the Sleep state.

 Note Before calling this function, you must manually configure the power mode of
the source clocks for the timer that is used as wakeup timer.

Note Before calling this function, you must prepare clock tree configuration for the
low power mode by calling CyPmSaveClocks(). And restore clock configuration
after CyPmSleep() execution by calling CyPmRestoreClocks(). See Power
Management section, Clock Configuration subsection of the System Reference
Guide for more information.

Parameters: wakeupTime: Specifies a timer wakeup source and the frequency of that source.
For PSoC 5LP, this parameter is ignored.

Define Time

PM_SLEEP_TIME_ONE_PPS One PPS: 1 second

PM_SLEEP_TIME_CTW_2MS CTW: 2 ms

PM_SLEEP_TIME_CTW_4MS CTW: 4 ms

PM_SLEEP_TIME_CTW_8MS CTW: 8 ms

PM_SLEEP_TIME_CTW_16MS CTW: 16 ms

PM_SLEEP_TIME_CTW_32MS CTW: 32 ms

PM_SLEEP_TIME_CTW_64MS CTW: 64 ms

PM_SLEEP_TIME_CTW_128MS CTW: 128 ms

PM_SLEEP_TIME_CTW_256MS CTW: 256 ms

PM_SLEEP_TIME_CTW_512MS CTW: 512 ms

PM_SLEEP_TIME_CTW_1024MS CTW: 1024 ms

PM_SLEEP_TIME_CTW_2048MS CTW: 2048 ms

PM_SLEEP_TIME_CTW_4096MS CTW: 4096 ms

Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 47

CyPmSleep (Continued)

Parameters: wakeupSource: Specifies a bitwise mask of wakeup sources. In addition, if a
wakeupTime has been specified, the associated timer will be included as a
wakeup source. The wakeup source configuration is restored before function exit.

Define Source

PM_SLEEP_SRC_COMPARATOR0 Comparator 0

PM_SLEEP_SRC_COMPARATOR1 Comparator 1

PM_SLEEP_SRC_COMPARATOR2 Comparator 2

PM_SLEEP_SRC_COMPARATOR3 Comparator 3

PM_SLEEP_SRC_PICU PICU

PM_SLEEP_SRC_I2C I2C

PM_SLEEP_SRC_BOOSTCONVERTER Boost Converter

PM_SLEEP_SRC_VD High and Low Voltage
Detection

PM_SLEEP_SRC_CTW Central Time Wheel

PM_SLEEP_SRC_ONE_PPS One PPS

PM_SLEEP_SRC_LCD LCD

 Note CTW and One PPS wakeup signals are in the same mask bit.

 When specifying a Comparator as the wakeupSource, use an instance specific
define that will track with the specific comparator for that instance. As an example
for a Comparator instance named "MyComp" the value to OR into the mask is:
MyComp_ctComp__CMP_MASK.

When CTW or One PPS is used as a wakeup source, the CyPmReadStatus
function must be called upon wakeup, with the corresponding parameter. Refer to
the CyPmReadStatus API for more information.

 Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 48

void CyPmHibernate()

Description: Puts the part into the Hibernate state.

Before switching to Hibernate, the current status of the PICU wakeup source bit is

saved and then set. This configures the device to wake up from the PICU.

Make sure you have at least one pin configured to generate a PICU interrupt. For
pin Px.y, the register "PICU_INTTYPE_PICUx_INTTYPEy" controls the PICU
behavior. In the TRM, this register is "PICU[0..15]_INTTYPE[0..7]." In the Pins
component datasheet, this register is referred to as the IRQ option. Once the
wakeup occurs, the PICU wakeup source bit is restored and the PSoC returns to
the Active state.

Side Effects and
Restrictions:

Applications must wait 20 µs before re-entering hibernate or sleep after waking
up from hibernate. The 20 µs allows the sleep regulator time to stabilize before
the next hibernate / sleep event occurs. The 20 µs requirement begins when the
device wakes up. There is no hardware check that this requirement is met. The
specified delay should be done on ISR entry.

After wakeup PICU interrupt occurs, the Pin_ClearInterrupt() function (where

"Pin" is the instance name of the Pins component) must be called to clear the
latched pin events. This allows proper Hibernate mode entry and enables
detection of future events.

The 1 kHz ILO clock is expected to be enabled to measure Hibernate/Sleep
regulator settling time after a reset. The hold-off delay is measured using rising
edges of the 1 kHz ILO.

Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 49

void CyPmHibernateEx(uint16 wakeupSource)

Description: Puts the part into the Hibernate state.

The following wake up sources can be configured: PICU interrupt, Comparator0,

Comparator1, Comparator2, and Comparator3 output.

Before switching to Hibernate, the current status of the wakeup source bit is
saved and then set. This configures the device to wake up from the particular
interrupt.

If using PICU as the wake up source, make sure you have at least one pin
configured to generate a PICU interrupt. For pin Px.y, the register
"PICU_INTTYPE_PICUx_INTTYPEy" controls the PICU behavior. In the TRM,
this register is "PICU[0..15]_INTTYPE[0..7]." In the Pins component datasheet,
this register is referred to as the IRQ option. Once the wakeup occurs, the PICU
wakeup source bit is restored and the PSoC returns to the Active state.

If using a comparator as the wake up source, make sure you call this function
with the 'wakeupSource' parameter set to the appropriate comparator. The part is
configured for the requested wakeup source by setting the corresponding bits in
PM_WAKEUP_CFG1 register.

Function call CyPmHibernateEx(CY_PM_HIB_SRC_PICU) will act in the same
way as CyPmHibernate().

Parameters: wakeupSource:

Parameter Value Description

CY_PM_HIB_SRC_PICU PICU interrupt is set as the wake up source

CY_PM_HIB_SRC_COMPARATOR0 Comparator 0 is set as the wake up source

CY_PM_HIB_SRC_COMPARATOR1 Comparator 1 is set as the wake up source

CY_PM_HIB_SRC_COMPARATOR2 Comparator 2 is set as the wake up source

CY_PM_HIB_SRC_COMPARATOR3 Comparator 3 is set as the wake up source

Side Effects and
Restrictions:

Applications must wait 20 µs before re-entering hibernate or sleep after waking
up from hibernate. The 20 µs allows the sleep regulator time to stabilize before
the next hibernate / sleep event occurs. The 20 µs requirement begins when the
device wakes up. There is no hardware check that this requirement is met. The
specified delay should be done on ISR entry.

After wakeup PICU interrupt occurs, the Pin_ClearInterrupt() function (where

"Pin" is the instance name of the Pins component) must be called to clear the
latched pin events. This allows proper Hibernate mode entry and enables
detection of future events.

The 1 kHz ILO clock is expected to be enabled to measure Hibernate/Sleep

regulator settling time after a reset. The hold-off delay is measured using rising
edges of the 1 kHz ILO.

 Power Management

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 50

uint8 CyPmReadStatus(uint8 mask)

Description: Manages the Power Manager Interrupt Status Register. This register has the
interrupt status for the one pulse per second, CTW, and FTW timers. This
hardware register clears on read. To allow for only clearing the bits of interest and
preserving the other bits, this function uses a shadow register that retains the
state. This function reads the status register and ORs that value with the shadow
register. That is the value that is returned. Then the bits in the mask that are set
are cleared from this value and written back to the shadow register.

Note You must call this function within 1 ms (1 clock cycle of the ILO) after a
CTW event has occurred.

Parameters: mask: Bits in the shadow register to clear

Define Source

CY_PM_FTW_INT Fast Time Wheel

CY_PM_CTW_INT Central Time Wheel

CY_PM_ONEPPS_INT One Pulse Per Second

Return Value: Status. Same enumerated bit values as used for the mask parameter.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 51

5 Interrupts

The APIs in this chapter apply to all architectures except as noted. The Interrupts API is provided in the

CyLib.c and CyLib.h files. Refer also to the Interrupt component datasheet for more information about

interrupts.

Note For PSoC 3, Keil C compiler run-time libraries do not disable interrupts. The only exception is found

in the C51 run-time library when using large reentrant functions. Interrupts are disabled for 4 CPU

instructions (8 CPU cycles) to adjust the large reentrant stack.

APIs

CyGlobalIntEnable

Description: Macro statement that enables interrupts using the global interrupt mask.

CyGlobalIntDisable

Description: Macro statement that disables interrupts using the global interrupt mask.

uint32 CyDisableInts()

Description: Disables all interrupts.

Return Value: 32-bit mask of interrupts previously enabled

void CyEnableInts(uint32 mask)

Description: Enables all interrupts specified in the 32-bit mask.

Parameters: mask: 32-bit mask of interrupts to enable

Note Interrupt service routines must follow the policy that they restore the CYDEV_INTC_CSR_EN

register bits and interrupt enable state (EA) to the way they were found on entry. The ISR does not need

to do anything special as long as it uses properly nested CyEnterCriticalSection() and

CyExitCriticalSection() function calls.

 Interrupts

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 52

void CyIntEnable(uint8 number)

Description: Enables the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

Note Interrupt service routines must follow the policy that they restore the CYDEV_INTC_CSR_EN

register bits and interrupt enable state (EA) to the way they were found on entry. The ISR does not need

to do anything special as long as it uses properly nested CyEnterCriticalSection() and

CyExitCriticalSection() function calls.

void CyIntDisable(uint8 number)

Description: Disables the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

Note Interrupt service routines must follow the policy that they restore the CYDEV_INTC_CSR_EN

register bits and interrupt enable state (EA) to the way they were found on entry. The ISR does not need

to do anything special as long as it uses properly nested CyEnterCriticalSection() and

CyExitCriticalSection() function calls.

uint8 CyIntGetState(uint8 number)

Description: Gets the enable state of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: Enable status: 1 if enabled, 0 if disabled

cyisraddress CyIntSetVector(uint8 number, cyisraddress address)

Description: Sets the interrupt vector of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

 address: Pointer to an interrupt service routine

Return Value: Previous interrupt vector value

cyisraddress CyIntGetVector(uint8 number)

Description: Gets the interrupt vector of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: Interrupt vector value

Interrupts

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 53

cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address)

Description: This function applies to ARM based processors only and therefore does not apply
to the PSoC 3 device. It sets the interrupt vector of the specified exception. These
exceptions in the ARM architecture operate similar to user interrupts, but are
specified by the system architecture of the processor. The number of each
exception is fixed. Note that the numbering of these exceptions is separate from
the numbering used for user interrupts.

Parameters: number: Exception number. Valid range: [0-15].

Define Exception Number

CY_INT_NMI_IRQN Non Maskable Interrupt.

CY_INT_HARD_FAULT_IRQN Hard Fault Interrupt.

CY_INT_MEM_MANAGE_IRQN Memory Management Interrupt.

CY_INT_BUS_FAULT_IRQN Bus Fault Interrupt.

CY_INT_USAGE_FAULT_IRQN Usage Fault Interrupt.

CY_INT_SVCALL_IRQN SV Call Interrupt.

CY_INT_DEBUG_MONITOR_IRQN Debug Monitor Interrupt.

CY_INT_PEND_SV_IRQN Pend SV Interrupt.

CY_INT_SYSTICK_IRQN System Tick Interrupt.

 address: Pointer to an interrupt service routine

Return Value: Previous interrupt vector value

cyisraddress CyIntGetSysVector(uint8 number)

Description: This function applies to ARM based processors only and therefore does not apply
to the PSoC 3 device. It gets the interrupt vector of the specified exception. These
exceptions in the ARM architecture operate similar to user interrupts, but are
specified by the system architecture of the processor. The number of each
exception is fixed. Note that the numbering of these exceptions is separate from
the numbering used for user interrupts.

Parameters: number: Exception number. Valid range: [0-15].

Return Value: Interrupt vector value

void CyIntSetPriority(uint8 number, uint8 priority)

Description: Sets the priority of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

 priority: Interrupt priority. 0 is the highest priority. Valid range: [0-7]

uint8 CyIntGetPriority(uint8 number)

Description: Gets the priority of the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: Interrupt priority

 Interrupts

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 54

void CyIntSetPending(uint8 number)

Description: Forces the specified interrupt number to be pending.

Parameters: number: Interrupt number. Valid range: [0-31]

void CyIntClearPending(uint8 number)

Description: Clears any pending interrupt for the specified interrupt number.

Parameters: number: Interrupt number. Valid range: [0-31]

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 55

6 Pins

In addition to the functionality provided for pins as part of the Pins component, a library of pin macros is

provided in the cypins.h file for the PSoC 3/PSoC 5LP devices. These macros all make use of the port pin

configuration register that is available for every pin on the PSoC 3/PSoC 5LP device. The address of that

register is provided in the cydevice_trm.h file. Each of these pin configuration registers is named:

CYREG_PRTx_PCy

where x is the port number and y is the pin number within the port.

APIs

uint8 CyPins_ReadPin(uint16/uint32 pinPC)

Description: Reads the current value on the pin (pin state, PS).

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3, uint32 PSoC 5LP)

Return Value: Pin state

 0: Logic low value

 Non-0: Logic high value

void CyPins_SetPin(uint16/uint32 pinPC)

Description: Set the output value for the pin (data register, DR) to a logic high. Note that this
only has an effect for pins configured as software pins that are not driven by
hardware.

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3, uint32 PSoC 5LP)

void CyPins_ClearPin(uint16/uint32 pinPC)

Description: Clear the output value for the pin (data register, DR) to a logic low. Note that this
only has an effect for pins configured as software pins that are not driven by
hardware.

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3, uint32 PSoC 5)

 Pins

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 56

void CyPins_SetPinDriveMode(uint16/uint32 pinPC, uint8 mode)

Description: Sets the drive mode for the pin (DM).

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3, uint32 PSoC 5LP)

 mode: Desired drive mode

Define Source

CY_PINS_DM_ALG_HIZ Analog HiZ

CY_PINS_DM_DIG_HIZ Digital HiZ

CY_PINS_DM_RES_UP Resistive pull up

CY_PINS_DM_RES_DWN Resistive pull down

CY_PINS_DM_OD_LO Open drain - drive low

CY_PINS_DM_OD_HI Open drain - drive high

CY_PINS_DM_STRONG Strong CMOS Output

CY_PINS_DM_RES_UPDWN Resistive pull up/down

uint8 CyPins_ReadPinDriveMode(uint16/uint32 pinPC)

Description: Reads the drive mode for the pin (DM).

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3, uint32 PSoC 5LP)

Return Value: Current drive mode for the pin

Define Source

CY_PINS_DM_ALG_HIZ Analog HiZ

CY_PINS_DM_DIG_HIZ Digital HiZ

CY_PINS_DM_RES_UP Resistive pull up

CY_PINS_DM_RES_DWN Resistive pull down

CY_PINS_DM_OD_LO Open drain - drive low

CY_PINS_DM_OD_HI Open drain - drive high

CY_PINS_DM_STRONG Strong CMOS Output

CY_PINS_DM_RES_UPDWN Resistive pull up/down

void CyPins_FastSlew(uint16/uint32 pinPC)

Description: Set the slew rate for the pin to fast edge rate. Note that this only applies for pins in
strong output drive modes, not to resistive drive modes.

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3, uint32 PSoC 5LP)

void CyPins_SlowSlew(uint16/uint32 pinPC)

Description: Set the slew rate for the pin to slow edge rate. Note that this only applies for pins
in strong output drive modes, not to resistive drive modes.

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3, uint32 PSoC 5LP)

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 57

7 Register Access

A library of macros provides read and write access to the registers of the device. These macros are used

with the defined values made available in the generated cydevice_trm.h and cyfitter.h files. Access to

registers should be made using these macros and not the functions that are used to implement the

macros. This allows for device independent code generation.

PSoC 3 is an 8-bit architecture, so the processor does not have endianness. However, the compiler for an

8-bit architecture will implement endianness. For PSoC 3, the Keil compiler implements a big endian

(MSB in lowest address) ordering. The PSoC 5LP processor architectures use little endian ordering.

SRAM and Flash storage in all architectures is done using the endianness of the architecture and

compilers. However, the registers in all these chips are laid out in little endian order. These macros allow

register accesses to match this little endian ordering. If you perform operations on multi-byte registers

without using these macros, you must consider the byte ordering of the specific architecture. Examples

include usage of DMA to transfer between memory and registers, as well as function calls that are passed

an array of bytes in memory.

The PSoC 3 is an 8-bit processor, so all accesses will be done a byte at a time. The PSoC 5LP will

perform accesses using the appropriate 8-, 16- and 32-bit accesses.

APIs

uint8 CY_GET_REG8(uint16/uint32 reg)

Description: Reads the 8-bit value from the specified register. For PSoC 3, the address must be
in the lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3, uint32 PSoC 5LP)

Return Value: Read value

void CY_SET_REG8(uint16/uint32 reg, uint8 value)

Description: Writes the 8-bit value to the specified register. For PSoC 3 the address must be in
the lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3, uint32 PSoC 5LP)

 value: Value to write

 Register Access

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 58

uint16 CY_GET_REG16(uint16/uint32 reg)

Description: Reads the 16-bit value from the specified register. This macro implements the byte
swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3, uint32 PSoC 5LP)

Return Value: Read value

void CY_SET_REG16(uint16/uint32 reg, uint16 value)

Description: Writes the 16-bit value to the specified register. This macro implements the byte
swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3, uint32 PSoC 5LP)

 value: Value to write

uint32 CY_GET_REG24(uint16/uint32 reg)

Description: Reads the 24-bit value from the specified register. This macro implements the byte
swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3, uint32 PSoC 5LP)

Return Value: Read value

void CY_SET_REG24(uint16/uint32 reg, uint32 value)

Description: Writes the 24-bit value to the specified register. This macro implements the byte
swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3, uint32 PSoC 5LP)

 value: Value to write

uint32 CY_GET_REG32(uint16/uint32 reg)

Description: Reads the 32-bit value from the specified register. This macro implements the byte
swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3, uint32 PSoC 5LP)

Return Value: Read value

Register Access

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 59

void CY_SET_REG32(uint16/uint32 reg, uint32 value)

Description: Writes the 32-bit value to the specified register. This macro implements the byte
swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3, uint32 PSoC 5LP)

 value: Value to write

uint8 CY_GET_XTND_REG8(uint32 reg)

Description: Reads the 8-bit value from the specified register. Supports the full address space
for PSoC 3, but requires more execution cycles than the standard register get
function. Identical to CY_GET_REG8 for PSoC 5LP.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_XTND_REG8(uint32 reg, uint8 value)

Description: Writes the 8-bit value to the specified register. Supports the full address space for
PSoC 3, but requires more execution cycles than the standard register set
function. Identical to CY_SET_REG8 for PSoC 5LP.

Parameters: reg: Register address

 value: Value to write

uint16 CY_GET_XTND_REG16(uint32 reg)

Description: Reads the 16-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register get function.
Identical to CY_GET_REG16 for PSoC 5LP.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_XTND_REG16(uint32 reg, uint16 value)

Description: Writes the 16-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register set function.
Identical to CY_SET_REG16 for PSoC 5LP.

Parameters: reg: Register address

 value: Value to write

 Register Access

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 60

uint32 CY_GET_XTND_REG24(uint32 reg)

Description: Reads the 24-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register get function.
Identical to CY_GET_REG24 for PSoC 5LP.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_XTND_REG24(uint32 reg, uint32 value)

Description: Writes the 24-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register set function.
Identical to CY_SET_REG24 for PSoC 5LP.

Parameters: reg: Register address

 Value to write

uint32 CY_GET_XTND_REG32(uint32 reg)

Description: Reads the 32-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register get function.
Identical to CY_GET_REG32 for PSoC 5LP.

Parameters: reg: Register address

Return Value: Read value

void CY_SET_XTND_REG32(uint32 reg, uint32 value)

Description: Writes the 32-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register set function.
Identical to CY_SET_REG32 for PSoC 5LP.

Parameters: reg: Register address

 value: Value to write

DMA

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 61

8 DMA

The DMA files provide the API functions for the DMA controller, DMA channels and Transfer Descriptors.

This API is the library version, not the code that is generated when the user places a DMA component on

the schematic. The automatically generated code would use the APIs in this module.

Refer to the DMA component datasheet for more information.

Note The linked list of all the Transfer Descriptors to be allocated is created (by CyDmacConfigure()

function call from the startup code) only if a DMA component is placed onto the schematic.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 62

9 Flash and EEPROM

Implementation

Flash Architecture

Flash memory in PSoC devices provides nonvolatile storage for user firmware, user configuration data,

bulk data storage, and optional error correcting code (ECC) data. The main flash memory area contains

up to 256 KB of user program space, depending on the device type.

Flash is organized as a set of arrays. Each array consists of 64, 128, or 256 rows. Each row contains 256

data bytes plus 32 bytes of ECC area. If ECC is not used, this space can store device configuration data

and bulk user data. User code may not be run out of the ECC flash memory section.

Flash Memory Array Structure

ECC (32 bytes)Data (256 bytes)Row 0

Row 1 Data ECC

Data ECCRow N

PSoC 3 flash memory has the following features:

◼ organized as one array of 64, 128, or 256 rows;

◼ each row contains 256 data bytes plus 32 bytes for either ECC or data storage.

PSoC 5LP flash memory has the following features:

◼ organized as either one array of 128 or 256 rows, or as multiple arrays of 256 rows each;

◼ each row contains 256 data bytes plus 32 bytes for either ECC or data storage.

See the device datasheet and TRM for more information on Flash architecture.

The System tab of the PSoC Creator Design-Wide Resources (DWR) file contains configuration options

that define ECC area utilization:

DWR Option ECC Function

Enable Error Correcting
Code (ECC)

ECC corrects one bit error and detect multiple bit errors per 8 bytes. ECC
area stores error correcting code data.

Flash and EEPROM

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 63

DWR Option ECC Function

Store Configuration
Data in ECC Memory

The device configuration data will be stored in ECC area to reduce main
FLASH memory usage. Error correction may not be used when this option
is enabled.

Note This option is always disabled for bootloader projects, as ECC area is
dedicated for bootloadable projects.

For more information on using ECC, refer to the Flash Program Memory chapter of the TRM.

PSoC devices include a flexible flash-protection model that prevents access and visibility to on-chip flash

memory. The device offers the ability to assign one of four protection levels to each row of flash:

◼ Unprotected

◼ Factory Upgrade

◼ Field Upgrade

◼ Full Protection

The required protection level can be selected using the Flash Security tab of the PSoC Creator DWR

file. Flash protection levels can only be changed by performing a complete flash erase. The Flash

programming APIs will fail to write a row with Full Protection level. For more information on protection

model, refer to the Flash Security Editor section in the PSoC Creator Help.

EEPROM Architecture

PSoC EEPROM memory is byte-addressable nonvolatile memory. The EEPROM is also organized as a

set of arrays. Both PSoC 3 and PSoC 5LP architectures have one EEPROM array, the size of which is

512 bytes, 1 KB, or 2 KB. The array consists of 32, 64, or 128 rows, depending on the device. Each row

contains 16 bytes of data.

Working with Flash and EEPROM

Flash and EEPROM are mapped into memory space and can be read directly. To get the address of the

first Flash / EEPROM row in a specified array ID, the array ID should be multiplied by array size, and

added to Flash / EEPROM base address. To access any row in the same array ID, the size of the row

should be multiplied by the desired row number and added to the first row address of the specified array.

Note When writing Flash, data in the instruction cache can become stale. Therefore, the cache data does

not correlate to the data just written to Flash. A call to CyFlushCache() is required to invalidate the data in

cache and force fresh information to be loaded from Flash.

The following table provides definitions of the device-specific Flash parameters that can be used to

operate with the Flash:

Value Description

CY_FLASH_BASE The base address of the Flash memory.

CY_FLASH_SIZE The size of the Flash memory.

CY_FLASH_SIZEOF_ARRAY The size of Flash array.

CY_FLASH_SIZEOF_ROW The size of the Flash row.

CY_FLASH_SIZEOF_ECC_ROW The size of the ECC row.

CY_FLASH_NUMBER_ROWS The number of Flash row.

CY_FLASH_NUMBER_ARRAYS The number of Flash arrays.

 Flash and EEPROM

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 64

The EEPROM API provides the following device-specific definitions:

Value Description

CY_EEPROM_BASE The base address of the EEPROM memory.

CY_EEPROM_SIZE The size of the EEPROM memory.

CY_EEPROM_SIZEOF_ARRAY The size of EEPROM array.

CY_EEPROM_SIZEOF_ROW The size of the EEPROM row.

CY_EEPROM_NUMBER_ROWS The number of EEPROM row.

CY_EEPROM_NUMBER_ARRAYs The number of EEPROM arrays.

CY_EEPROM_NUMBER_SECTORS The number of EEPROM sectors.

CY_EEPROM_SIZEOF_SECTOR The size of EEPROM sector.

Both Flash and EEPROM are programmed through the system performance controller (SPC). To interface

with the SPC, information is pushed into, and pulled from, a single register. The Flash/EEPROM specific

API provides unified approach to work with Flash as well as EEPROM and simplifies interacting with the

SPC by abstracting the details away.

In PSoC 3/PSoC 5LP devices, flash can be read either by the cache controller or the SPC. Flash write

can be performed only by SPC. Both SPC and cache cannot simultaneously access the flash memory. If

the cache controller tries to access flash at the same time as the SPC, then it must wait until the SPC

completes its flash access operation. The CPU, which accesses the flash memory through the cache

controller, is therefore also stalled in this circumstance. If a CPU code fetch has to be done from the flash

memory due to a cache miss condition, then the cache would have to wait till the SPC completes the

flash write operation. Thus the CPU code execution will also be halted till the flash write is complete.

It can take as many as 20 milliseconds to write to EEPROM or Flash. During this time the device should

not be reset, or unexpected changes may be made to portions of EEPROM or Flash. Reset sources

include XRES pin, software reset, and watchdog; care should be taken to make sure that these are not

inadvertently activated. Also, the low voltage detect circuits should be configured to generate an interrupt

instead of a reset.

PSoC devices have an on-chip temperature sensor that is used to measure the internal die temperature.

You must acquire the temperature at least once to use Flash and EEPROM write functions. If the

application will be used in an environment where the die temperature changes 10 °C or more, the

temperature should be refreshed to adjust the write times to the Flash for optimal performance. The die

temperature is obtained by calling the CySetTemp() function. This function queries SPC for the die

temperature and stores it in a global variable, which is used implicitly while performing Flash and

EEPROM write operations.

When programming Flash with error detection/correction function disabled (ECC flash space is used for

data storage), there are multiple methods for writing a row of data:

◼ Use CyWriteRowFull() to write the entire row including ECC;

◼ Use CyWriteRowData() to write the entire row without ECC;

◼ Use CyWriteRowConfig() to write just the ECC memory.

Flash or EEPROM can be written by one row at a time by calling the CyWriteRowData() function. The first

parameter determines the Flash or EEPROM array. The number of arrays that are Flash and the number

of arrays that are EEPROM are specific to the exact device selected. Refer to device TRM to determine

which array IDs are valid. The row numbering starts from 0 for each array ID.

Flash and EEPROM

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 65

Flash Programming Diagram

CySetTemp()

CyFlash_Start()
(optional)

CyWriteRowData()CyWriteRowFull()
CyWriteRowConfig()

(ECC Disabled)

Data type
Data row + ECC row

Data row

ECC row

EEPROM Programming Diagram

CySetTemp()

CyEEPROM_Start()

CyWriteRowFull()
CyWriteRowData()

Power Modes

For PSoC 3/PSoC 5LP devices, the power manager will not put the device into a low power state if the

system performance controller (SPC) is executing a command. The device will go into low power mode

after the SPC completes command execution.

Flash and EEPROM APIs

cystatus CySetTemp()

Description: Updates the static snapshot of current chip temperature value obtained from on-
chip temperature sensor. This function must be called once before executing a
series of Flash / EEPROM writing functions. In case the application will be used in
an environment where the die temperature changes significantly (10 °C or more),
care should be taken to keep the temperature snapshot value up-to-date to adjust
the write times to the Flash for optimal performance.

Return Value: Status

Value Description

CYRET_SUCCESS Successful

CYRET_LOCKED Flash / EEPROM writing already in use

CYRET_UNKNOWN Failure

Side Effects and
Restrictions:

The function does not return until the SPC has returned to an idle state.

 Flash and EEPROM

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 66

cystatus CyWriteRowFull(uint8 arrayId, uint16 rowAddress, uint8 *rowData,
uint16 rowSize)

Description: Allows a row to be erased and programmed.

If the array is a Flash array:

DWR Flash configuration Description

Enable ECC – ON

Store Configuration Data in
ECC Memory – N/A

Data are written to the flash row. The ECC for these data
are calculated and written automatically.

The size of the data equals the size of the flash row.

Enable ECC – OFF

Store Configuration Data in
ECC Memory – ON

Data are written to both flash and ECC rows.

To prevent overwriting of the configuration data stored in
the ECC flash space, the size of the data must be equal
to the size of the flash row.

Enable ECC – OFF

Store Configuration Data in
ECC Memory – OFF

Data are written to both flash and ECC rows.

The size of the data equals the sum of flash row and
ECC row sizes.

If the array is an EEPROM array, the size of data equals EEPROM row size.

Parameters: uint8 arrayId: ID of the array to write. The type of write, Flash or EEPROM, is
determined from the array ID. The arrays in the part are sequential starting at the
first ID for the specific memory type. The array ID for the Flash memory lasts from
0x00 to 0x3F and for the EEPROM memory it lasts from 0x40 to 0x7F.

 uint16 rowAddress: Row address within the specified arrayId.

 uint8 *rowData: Address of the data to be programmed.

uint16 rowSize: Number of bytes of row data

Return Value: Status

Value Description

CYRET_SUCCESS Successful

CYRET_LOCKED Flash / EEPROM writing already in use

CYRET_CANCELED Command not accepted

Other non-zero Failure

Flash and EEPROM

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 67

cystatus CyWriteRowData(uint8 arrayId, uint16 rowAddress, uint8 *rowData)

Description: Writes a row of Flash or EEPROM.

If the array is a Flash array:

DWR Flash configuration Description

Enable ECC – ON

Store Configuration Data in
ECC Memory – N/A

Data are written to the flash row. The ECC for these
data are calculated and written automatically.

The size of the data that is passed to this function
equals the size of the flash row.

Enable ECC – OFF

Store Configuration Data in
ECC Memory – ON/OFF

Data are written to the flash memory.

The data stored in ECC memory are preserved.

If the array is an EEPROM array, the size of data equals EEPROM row size.

Parameters: uint8 arrayId: ID of the array to write. The type of write, Flash or EEPROM, is
determined from the array ID. The arrays in the part are sequential starting at the
first ID for the specific memory type. The array ID for the Flash memory lasts from
0x00 to 0x3F and for the EEPROM memory it lasts from 0x40 to 0x7F.

 uint16 rowAddress: Row address within the specified arrayId.

 uint8 *rowData: Address of the data to be programmed.

Return Value: Status

Value Description

CYRET_SUCCESS Successful

CYRET_LOCKED Flash / EEPROM writing already in use

CYRET_CANCELED Command not accepted

Other non-zero Failure

 Flash and EEPROM

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 68

cystatus CyWriteRowConfig(uint8 arrayId, uint16 rowAddress, uint8 *rowECC)

Description: Writes the ECC portion of a Flash. This function is only valid for Flash array IDs
(not for EEPROM).

DWR Flash configuration Description

Enable ECC – ON

Store Configuration Data in
ECC Memory – N/A

This function is not available for this configuration as
the ECC is stored in the ECC memory.

Enable ECC – OFF

Store Configuration Data in
ECC Memory – ON

This function is not available for this configuration as
the Configuration Data are stored in the ECC
memory.

Enable ECC – OFF

Store Configuration Data in
ECC Memory – OFF

Data are written to the ECC row.

The data stored in Flash row are preserved.

Parameters: uint8 arrayId: ID of the array to write. The arrays in the part are sequential starting
at the first ID for the specific memory type. The array ID for the Flash memory lasts
from 0x00 to 0x3F.

 uint16 rowAddress: Row address within the specified arrayId.

 uint8 *rowECC: Address of the data to be programmed.

Return Value: Status

Value Description

CYRET_SUCCESS Successful

CYRET_LOCKED Flash / EEPROM writing already in use

CYRET_CANCELED Command not accepted

Other non-zero Failure

void CyFlash_Start()

Description: Enables the Flash. By default Flash is enabled.

void CyFlash_Stop()

Description: Disables the Flash. This setting is ignored as long as the CPU is currently running.
This will only take effect when the CPU is later disabled.

Flash and EEPROM

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 69

cystatus CyFlash_EraseRow(uint8 arrayId, uint16 rowAddress)

Description: Erases a single row of flash. Reports success or reason for failure. The API does
not return until the erase operation is complete.

Parameters: uint8 arrayId: ID of the array to erase.

 uint16 rowAddress: Row address within the specified arrayId.

Return Value: Status

Value Description

CYRET_SUCCESS Successful

CYRET_LOCKED Flash writing already in use

CYRET_CANCELED Command not accepted

CYRET_BAD_PARAM One or more invalid parameters

Other non-zero Failure

void CyFlash_SetWaitCycles(uint8 freq)

Description: Sets the number of clock cycles the cache will wait before it samples data coming
back from Flash. This function must be called before increasing CPU clock
frequency. It can optionally be called after lowering CPU clock frequency in order
to improve CPU performance.

Parameters: freq: CPU operation frequency in Megahertz.

void CyEEPROM_Start()

Description: Enables the EEPROM.

The EEPROM is controlled by a separate bit and must be started before it can be
used.

void CyEEPROM_Stop()

Description: Disables the EEPROM.

The EEPROM is controlled by a separate bit and can be stopped independently.

void CyEEPROM_ReadReserve()

Description: Request access to the EEPROM for reading and waits until that access is
available. The access to EEPROM is arbitrated between the controller that writes
to the EEPROM and the normal access to read from EEPROM. It is not required to
reserve access to the EEPROM for reading, but if a write is still active and a read
is attempted a fault is generated and the wrong data is returned.

void CyEEPROM_ReadRelease()

Description: Releases the read reservation of the EEPROM. If the EEPROM has been
reserved for reading, then it must be released before further writes to the
EEPROM can be performed.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 70

10 System Functions

These functions apply to all architectures.

General APIs

uint8 CyEnterCriticalSection(void)

Description: CyEnterCriticalSection disables interrupts and returns a value indicating whether
interrupts were previously enabled (the actual value depends on the device
architecture).

Note Implementation of CyEnterCriticalSection manipulates the IRQ enable bit with
interrupts still enabled. The test and set of the interrupt bits is not atomic; this is true
for all architectures. Therefore, to avoid corrupting the processor state, it must be the
policy that all interrupt routines restore the interrupt enable bits as they were found
on entry.

Return Value: uint8

PSoC 3 – Returns a value containing two bits:

bit 0: 1 if interrupts were enabled before CyEnterCriticalSection was called.

bit 1: 1 if IRQ generation was disabled before CyEnterCriticalSection was called.

PSoC 5LP – Returns 0 if interrupts were previously enabled or 1 if interrupts were
previously disabled.

void CyExitCriticalSection(uint8 savedIntrStatus)

Description: CyExitCriticalSection re-enables interrupts if they were enabled before
CyEnterCriticalSection was called. The argument should be the value returned from
CyEnterCriticalSection.

Parameters: uint8 savedIntrStatus: Saved interrupt status returned by the CyEnterCriticalSection
function.

void CYASSERT(uint32 expr)

Description: Macro that evaluates the expression and if it is false (evaluates to 0) then the
processor is halted. This macro is evaluated unless NDEBUG is defined. If NDEBUG
is defined, then no code is generated for this macro. NDEBUG is defined by default
for a Release build setting and not defined for a Debug build setting.

Parameters: expr: Logical expression. Asserts if false.

System Functions

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 71

void CyHalt(uint8 reason)

Description: Halts the CPU.

Parameters: reason: Value to be passed for debugging. This value may be useful to know the
reason why CyHalt() was invoked.

void CySoftwareReset(void)

Description: Forces a software reset of the device.

void CyGetUniqueId(uint32* uniqueId)

Description: Returns the 64-bit unique id of the device

Parameters: uniqueId: Pointer to a two element 32-bit unsigned integer array.

Return Value: Returns the 64-bit unique id of the device by loading them into the integer array
pointed to by uniqueId.

CyDelay APIs

There are four CyDelay APIs that implement simple software-based delay loops. The loops compensate

for bus clock frequency.

The CyDelay functions provide a minimum delay. If the processor is interrupted, the length of the loop will

be extended by as long as it takes to implement the interrupt. Other overhead factors, including function

entry and exit, may also affect the total length of time spent executing the function. This will be especially

apparent when the nominal delay time is small.

void CyDelay(uint32 milliseconds)

Description: Delay by the specified number of milliseconds. By default the number of cycles to
delay is calculated based on the clock configuration entered in PSoC Creator. If
the clock configuration is changed at run-time, then the function CyDelayFreq is
used to indicate the new Bus Clock frequency. CyDelay is used by several
components, so changing the clock frequency without updating the frequency
setting for the delay can cause those components to fail.

Parameters: milliseconds: Number of milliseconds to delay.

Side Effects and
Restrictions:

CyDelay has been implemented with the instruction cache assumed enabled.
When instruction cache is disabled on PSoC 5LP, CyDelay will be two times
larger. For example, with instruction cache disabled CyDelay(100) would result in
about 200 ms delay instead of 100 ms.

 System Functions

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 72

void CyDelayUs(uint16 microseconds)

Description: Delay by the specified number of microseconds. By default the number of cycles
to delay is calculated based on the clock configuration entered in PSoC Creator.
If the clock configuration is changed at run-time, then the function CyDelayFreq is
used to indicate the new Bus Clock frequency. CyDelayUs is used by several
components, so changing the clock frequency without updating the frequency
setting for the delay can cause those components to fail.

Parameters: microseconds: Number of microseconds to delay.

Return Value: Void

Side Effects and
Restrictions:

CyDelayUS has been implemented with the instruction cache assumed enabled.
When instruction cache is disabled on PSoC 5LP, CyDelayUs will be two times
larger. For example, with instruction cache disabled CyDelayUs(100) would result
in about 200 us delay instead of 100 us.

If the bus clock frequency is a small non-integer number, the actual delay can be
up to twice as long as the nominal value. The actual delay cannot be shorter than
the nominal one.

void CyDelayFreq(uint32 freq)

Description: Sets the Bus Clock frequency used to calculate the number of cycles needed to
implement a delay with CyDelay. By default the frequency used is based on the
value determined by PSoC Creator at build time.

Parameters: freq: Bus clock frequency in Hz.

 0: Use the default value

 non-0: Set frequency value

void CyDelayCycles(uint32 cycles)

Description: Delay by the specified number of cycles using a software delay loop.

PSoC 3: The execution overhead is in range of 20-46 cycles depending on the
number of the delay cycles.

PSoC 5: The execution overhead is in range of 8-23 cycles depending on the
number of the delay cycles.

The 20-cycle overhead means that CyDelayCycles(100), will be executed for 120
cycles.

Parameters: cycles: Number of cycles to delay. Valid range is from 0 to the maximum uint32
type value.

Voltage Detect APIs

Functional Description

Voltage monitoring circuits in these devices can be configured to generate an interrupt when Vdda or

Vddd is outside a defined range. Low-voltage interrupts are available for both the analog and digital

supplies, and a high-voltage interrupt is available for the analog supply. The trip levels for the low-voltage

System Functions

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 73

detectors are independently configurable. The trip level for the high-voltage detector is fixed at 5.75 V.

The analog and digital low-voltage monitoring circuits can also be configured to reset the device instead

of generating an interrupt.

Device Reset

Bits [2:0] in the Reset and Voltage Detection Status Register 1 (RESET_CR1) register control whether or

not the voltage monitoring circuits generate an interrupt if the supply is outside the trip level. If the low-

voltage interrupts are enabled, then bits [7:6] in Reset and Voltage Detection Status Register 3

(RESET_CR3) register control whether or not the device is reset when a low-voltage event occurs. The

low-voltage interrupt resets are part of the precision reset circuit and generate a momentary hardware

POR reset.

Low/High-Voltage Detection

The status of the voltage monitor circuits is stored in two different ways:

◼ CyVdStickyStatus() function operates with the bits [2:0] of the Reset and Voltage Detection Status
Register 0 (RESET_SR0) register that are set to 1 if a low-voltage or high-voltage event has
occurred. This register is cleared when read or upon POR reset.

◼ CyVdRealTimeStatus() function operates with the bits [2:0] of the Reset and Voltage Detection
Status Register 2 (RESET_SR2) register that holds the real-time status of the voltage monitor
circuits’ outputs, which means they will only be set to ‘1’ for the duration that the event is
occurring.

Interrupt Configuration

The GlobalSignalRef component can be used to connect the LVI and HVI interrupt signals to other

components in the project schematic, or an interrupt component if you wish to execute an interrupt on an

LVI/HVI event. If “Low/High Voltage Detect (LVI/HVI)” is selected in the component, the output of

GlobalSignalRef is set to 1 whenever any of the enabled LVI or HVI circuits detect an event. The output

will remain at 1 as long as an LVI or HVI event is occurring. Refer to the GlobalSignalRef component

datasheet for more information.

Note that the interrupt is level sensitive. This means that interrupt will continue to fire as long as the

voltage monitor detects the event. The solution may be to disable the LVD interrupt (using Interrupt

component API) when the interrupt executes the first time. Then re-enable the interrupt when the

CyVdRealTimeStatus() function no longer reports the event conditions. Remember to clear the pending

interrupt before re-enabling the interrupts.

Best Practices

If the Vddd and Vdda supplies are tied together, you can configure an interrupt and a low-voltage reset.

Configure one of the voltage monitors to detect a particular threshold to indicate a low voltage condition,

and configure the other voltage monitor to generate a reset when the voltage goes too low. For instance,

the analog voltage monitor could detect a 2.5 volt condition (indicating batteries are getting low) and the

digital voltage monitor circuit could be used to issue a reset when the voltage reached 2.3 volts.

 System Functions

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 74

APIs

The following API functions configure and manage the voltage monitoring circuits and associated interrupt

status registers. For more information on the voltage monitoring circuits, refer to the Voltage Monitoring

section of the device TRM and the Power Voltage Level Monitors section of the device datasheet.

void CyVdLvDigitEnable(uint8 reset, uint8 threshold)

Description: Sets the voltage trip level, enables the output of the digital low-voltage monitor,
and optionally configures voltage monitor to reset device upon the low-voltage
event instead of generating an interrupt.

Note The associated interrupt enable/disable state is not changed by the
function. The Interrupt component’s API should be used to register the interrupt
service routine and to enable/disable associated interrupt.

Parameters: reset: Enables device reset on digital low-voltage event:

• Zero - Interrupt on digital low-voltage event

• Non-zero - Reset on digital low-voltage event

 threshold: Sets the trip point of the digital low-voltage monitoring circuit in steps
of approximately 250 mV in range from 1.70 V (0x00) to 5.45 V (0x0F). For
example, the trip point is set to 2.70 V when the threshold parameter value is
0x04. Refer to the device TRM for the exact trip voltage values.

Side Effects and
Restrictions

The voltage resets are momentary. When a voltage reset (analog/digital low-
voltage and analog high-voltage) occurs, the RESET_CR1 and RESET_CR3
registers are restored to their default values. This means that the voltage monitor
circuit is no longer enabled and the device exits reset. If the supply is below the
trip level and firmware enables the voltage reset functionality, the device will reset
again. This will continue as long as the supply is below the trip level or as long as
the user enables the reset functionality of the voltage monitor functionality.

When any voltage reset occurs, the RESET_SR0 and RESET_SR2 status
registers are cleared. This means that analog low-voltage, digital low-voltage and
analog high-voltage status bits are not persistent across any voltage reset.

System Functions

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 75

void CyVdLvAnalogEnable(uint8 reset, uint8 threshold)

Description: Sets the voltage trip level, enables the output of the analog low-voltage monitor,
and optionally configures voltage monitor to reset device upon the low-voltage
event instead of generating an interrupt.

Note The associated interrupt enable/disable state is not changed by the
function. The Interrupt component’s API should be used to register the interrupt
service routine and to enable/disable associated interrupt.

Parameters: reset: Enables device reset on analog low-voltage event:

• Zero - Interrupt on analog low-voltage event.

• Non-zero - Reset on analog low-voltage event.

 threshold: Sets the trip point of the analog low-voltage monitoring circuit in steps
of approximately 250 mV in range from 1.70 V (0x00) to 5.45 V (0x0F). For
example, the trip point is set to 1.80 V when value of the threshold parameter is
0x04. Please refer to the device TRM for the exact trip voltage values.

Side Effects and
Restrictions

The voltage resets are momentary. When a voltage reset (analog/digital low-
voltage and analog high-voltage) occurs, the RESET_CR1 and RESET_CR3
registers are restored to their default values. This means that the voltage monitor
circuit is no longer enabled and the device exits reset. If the supply is below the
trip level and firmware enables the voltage reset functionality, the device will reset
again. This will continue as long as the supply is below the trip level or as long as
the user enables the reset functionality of the voltage monitor functionality.

When any voltage reset occurs, the RESET_SR0 and RESET_SR2 status
registers are cleared. This means that analog low-voltage, digital low-voltage and
analog high-voltage status bits are not persistent across any voltage reset.

void CyVdLvDigitDisable(void)

Description: Disables the digital low-voltage monitor, turns off device reset upon the digital
low-voltage event, and clears the associated persistent status bit.

Note The associated interrupt enable/disable state is not changed by the
function. The pending interrupt status is not cleared. The Interrupt component’s
API should be used to manipulate with the associated interrupts.

void CyVdLvAnalogDisable(void)

Description: Disables the analog low-voltage monitor, turns off device reset upon the analog
low-voltage event, and clears the associated persistent status bit.

Note The associated interrupt enable/disable state is not changed by the
function. The pending interrupt status is not cleared. The Interrupt component’s
API should be used to manipulate with the associated interrupts.

 System Functions

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 76

void CyVdHvAnalogEnable(void)

Description: Enables the output of the analog high-voltage monitor and sets 5.75 V threshold
detection for Vdda.

Note The associated interrupt enable/disable state is not changed by the
function. The Interrupt component’s API should be used to register the interrupt
service routine and to enable/disable associated interrupt.

void CyVdHvAnalogDisable(void)

Description: Disables the analog high-voltage monitor and clears the associated persistent
status bit.

Note The associated interrupt enable/disable state is not changed by the
function. The pending interrupt status is not cleared. The Interrupt component’s
API should be used to manipulate with the associated interrupts.

uint8 CyVdStickyStatus(uint8 mask)

Description: Reads and clears the voltage detection status bits in the RESET_SR0 register.
The bits are set to 1 by the voltage monitor circuit when the supply is outside the
detector’s trip point. They stay set to 1 until they are read or a POR / LVI / PRES
reset occurs. This function uses a shadow register, so only the bits passed in the
parameter will be cleared in the shadow register.

Parameters: mask: Bits in the RESET_SR0 shadow register to clear and return.

Value Definition Register [bits]

CY_VD_LVID Persistent status of digital LVI RESET_SR0 [0]

CY_VD_LVIA Persistent status of analog LVI RESET_SR0 [1]

CY_VD_HVIA Persistent status of analog HVI RESET_SR0 [2]

Return Value: Status. Same enumerated bit values as used for the mask parameter. A zero is
returned for bits not used in the mask parameter.

Side Effects and
Restrictions

When an LVI reset occurs, the RESET_SR0 status registers are cleared. This
means that the voltage detection status bits are not persistent across an LVI
reset and cannot be used to determine a reset source.

uint8 CyVdRealTimeStatus(void)

Description: Reads the real-time voltage detection status bits in the RESET_SR2 register.
The bits are set to 1 by the voltage monitor circuit when the supply is outside the
detector’s trip point, and set to 0 when the supply is inside the trip point.

Return Value: Status of the LVID, LVIA, and HVIA bits in the RESET_SR2 register.

 Value Definition Register [bits]

 CY_VD_LVID Real-time status of digital LVI RESET_SR0 [0]

CY_VD_LVIA Real-time status of analog LVI RESET_SR0 [1]

CY_VD_HVIA Real-time status of analog HVI RESET_SR0 [2]

Side Effects and
Restrictions

When an LVI reset occurs, the RESET_SR2 status registers are cleared. This
means that the voltage detection status bits are not persistent across an LVI
reset and cannot be used to determine a reset source.

System Functions

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 77

Cache Functionality

PSoC 3

The PSoC 3 cache is enabled by default. It can be disabled using the PSoC Creator Design-Wide

Resources System Editor. There are no defines, functions or macros for cache handling for PSoC 3.

PSoC 5LP

void CyFlushCache()

Description: Call this API after a flash row erase/write operation to invalidate or flush any of that
particular flash region content already present in the cache. After a cache flush
operation, any access to that flash region after the erase/write operation would
reload the cache with the modified data from the flash region.

If the flash region update involves multiple flash row write operations, then the
flushing of the cache can be done once at the end of the operation, as long as the
flash data would not be accessed in the middle of the multiple row update process.
Otherwise, flush the cache after every flash row write.

Macro Callbacks

Macro callbacks allow users to execute code from the API files that are automatically generated by PSoC

Creator. Refer to the PSoC Creator Help and Component Author Guide for the more details.

In order to add code to the macro callback present in the component’s generated source files, perform the

following:

◼ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will “uncomment”
the function call from the component’s source code.

◼ Write the function declaration (in cyapicallbacks.h). This will make this function visible by all the

project files.

◼ Write the function implementation (in any user file).

Macro Callback [1] Associated Macro Description

CyBoot_IntDefault
Handler_Exception
_EntryCallback

CY_BOOT_INT_DEFAULT_HA
NDLER_EXCEPTION_ENTRY_
CALLBACK

Used at the beginning of the IntDefaultHandler()
interrupt handler to perform additional
application-specific actions in unhandled
exceptions on PSoC 5 devices.

CyBoot_CyPmRest
oreClocks_EcoTim
eout_Callback

CY_BOOT_CY_PM_RESTORE
_CLOCKS_ECO_TIMEOUT_CA
LLBACK

Used at the CyPmRestoreClocks() to handle
situations when megahertz crystal failed to
start.

CyBoot_CyPmRest
oreClocks_PllTime
out_Callback

CY_BOOT_CY_PM_RESTORE
_CLOCKS_PLL_TIMEOUT_CA
LLBACK

Used at the CyPmRestoreClocks() to handle
situations when PLL failed to start.

CyBoot_CyPmSlee
p_BeforeSleep_Cal
lback

CY_BOOT_CY_PM_SLEEP_BE
FORE_SLEEP_CALLBACK

Used at the CyPmSleep() to execute code just
before low power mode entry. Do not use this

1 The macro callback name is formed by component function name optionally appended by short explanation and “Callback”

suffix.

 System Functions

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 78

Macro Callback [1] Associated Macro Description

callback unless any component datasheet
suggests doing so.

CyBoot_CyPmSlee
p_AfterSleep_Callb
ack

CY_BOOT_CY_PM_SLEEP_AF
TER_SLEEP_CALLBACK

Used at the CyPmSleep() to execute code just
after wakeup from the low power mode entry.
Do not use this callback unless any component
datasheet suggests doing so.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 79

11 Startup and Linking

The cy_boot component is responsible for the startup of the system. The following functionality has been

implemented:

◼ Provide the reset vector

◼ Setup processor for execution

◼ Setup interrupts

◼ Setup the stack including the reentrant stack for the 8051

◼ Configure the device

◼ Initialize static and global variables with initialization values

◼ Clear all remaining static and global variables

◼ Integrate with the bootloader functionality

◼ Preserve the reset status

◼ Call main() C entry point

See application note AN60616 for more details on PSoC 3 and PSoC 5LP startup.

The device startup procedure configures the device to meet datasheet and PSoC Creator project

specifications. Startup begins after the release of a reset source, or after the end of a power supply ramp.

There are two main portions of startup: hardware startup and firmware startup. During hardware startup,

the CPU is halted, and other resources configure the device. During firmware startup, the CPU runs code

generated by PSoC Creator to configure the device. When startup ends, the device is fully configured,

and its CPU begins execution of user-authored main() code.

The hardware startup configures the device to meet the general performance specifications given in the

datasheet. The hardware startup phase begins after a power supply ramp or reset event. There are two

phases of hardware startup: reset and boot. After hardware startup ends, code execution from Flash

begins.

Firmware startup configures the PSoC device to behave as described in the PSoC Creator project. It

begins at the end of hardware startup. The PSoC device’s CPU begins executing user-authored main()

code after the completion of firmware startup. The main task of firmware startup is to populate

configuration registers such that the PSoC device behaves as designed in the PSoC Creator project. This

includes configuring analog and digital peripherals, as well as system resources such as clocks and

routing.

The startup procedure may be altered to better fit a specific application’s needs. There are two ways to

modify device startup: using the PSoC Creator design-wide resources (DWR) interface, and modifying the

device startup code.

http://www.cypress.com/?rID=40991

 Startup and Linking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 80

PSoC 3

Startup is all handled by a single assembly file (KeilStart.a51), which is based on a template provided by
Keil. There isn’t a file specifically associated with linking. The linker directives are used instead. For more
information on the 8051 architecture, refer to the Language Extensions section on www.keil.com.

For the more information on the PSoC 3’s architecture refer to the AN54181.

PSoC 5LP

The startup and linker scripts have been custom developed by Cypress, but both of the toolchain vendors

that we currently support provide example linker implementations and complete libraries that solve many

of the issues that have been created by our custom implementations.

The memory layout of the final binary and hex images, as well as the placement in PSoC 5LP memory is

described in the linker descriptor (.scat) file generated as part of the PSoC Creator build. The custom

linker descriptor file can be used when building the project instead of the default one by going to Build

Settings window and specifying path to the file in the Custom Linker Script field of the Linker category.

For the more information on the PSoC 5LP’s CPU architecture, refer to the Cortex™-M3 Technical

Reference Manual on infocenter.arm.com. There is also Application Note 179 - Cortex™ -M3 Embedded

Software Development on infocenter.arm.com.

Unaligned Transfers (PSoC 5LP)

The PSoC 5LP supports unaligned transfers on single accesses with a number of limitations common for

Cortex-M3 platform. When unaligned transfers are used, they are actually converted into multiple aligned

transfers. This conversion is transparent from the software point of view. When an unaligned transfer

takes place, it is broken into separate transfers. So, it takes more clock cycles for a single data access. To

get the best performance and to ensure code compatibility through PSoC processors family, the

unaligned transfers should be avoided.

In PSoC 5LP, SRAM is located at Cortex-M3 Code/SRAM regions boundary. The unaligned accesses that

cross memory map boundaries are architecturally unpredictable. The linker configuration files used for

PSoC 5LP do not protect against unaligned accesses that cross this boundary.

When unaligned accesses must be used, use a function that checks for the possible boundary problem

and do byte accesses at the boundary or modify the linker script to force the memory that needs to be

accessed in an unaligned fashion to not span this border.

GCC Implementation

PSoC Creator integrates the GCC ARM Embedded compiler including making the Newlib-nano and

newlib libraries. Refer to the Red Hat newlib C Library for the C library reference manual.

The newlib-nano is configured by default. To choose newlib library, open the Build Settings dialog >

ARM GCC 4.8.4 > Linker > General, and set the “Use newlib-nano” option to False.

By default, with the GNU ARM compiler, the string formatting functions in the C run-time library return

empty strings for floating-point conversions. The newlib-nano library is a stripped-down version of the full

C newlib. It does not include support for floating point formatting and other memory-intensive features.

There are two solutions to this problem: enable floating-point formatting support in newlib-nano, or

change the library to the full newlib.

http://www.keil.com/support/man/docs/c51/c51_extensions.htm
http://www.cypress.com/?rID=39157
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337i/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337i/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0179b/AppsNote179.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dai0179b/AppsNote179.pdf
https://sourceware.org/newlib/docs.html

Startup and Linking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 81

To enable floating-point formatting, open the Build Settings dialog, go to the Linker page, and add the
string -u _printf_float to the command line options. This change will result in an increase in Flash

and RAM usage in your application.

Note If you also wish to use the scanf functions with floating-point numbers you should add the string

–u _scanf_float as well, with another increase in Flash and RAM usage.

Realview Implementation (applicable for MDK

Use all the standard libraries (C standardlib, C microlib, fplib, mathlib). All of these libraries are linked in

by default.

◼ Support for RTOS and user replacement of routines. This is possible because the library routines
are denoted as "weak" allowing their replacement if another implementation is provided.

◼ A mechanism is provided that allows for the replacement of the provided linker/scatter file with a
user version. This is implemented by allowing the user to create the file local to their project and
having a build setting that allows the specification of this file as the linker/scatter file instead of the
file provided automatically.

◼ Currently the heap and stack size are specified as a fixed quantity (4 K Stack, 1 K Heap). If
possible the requirement to specify Heap and Stack sizes should be removed entirely. If that is
not possible, then these values should be the defaults with the option to choose other values in
the Design-Wide Resources GUI.

◼ All the code in the Generated Source tree is compiled into a single library as part of the build

process. Then that compiled library is linked in with the user code in the final link.

CMSIS Support

Cortex Microcontroller Software Interface Standard (CMSIS) is a standard from ARM for interacting with

Cortex M-series processors. There are multiple levels of support. The Core Peripheral Access Layer

(CMSIS Core) support is provided. For the more information refer to CMSIS - Cortex Microcontroller

Software Interface Standard on www.arm.com.

PSoC Creator 3.2 provides support for CMSIS Core version 4.0. Also, PSoC Creator 3.2 provides the

ability to use a custom version of the CMSIS Core.

The following diagram shows how CMSIS Core version 4.0 files are integrated into the cy_boot

component and how custom version of CMSIS Core files can be integrated.

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

 Startup and Linking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 82

CMSIS-CORE

Device Files (Cypress)

User Program

CMSIS-CORE

Standard Files (ARM)

core_cm3.h

Cm3RealView.scat

(cm3gcc.ld)

Cm3Start.c

core_cm3_psoc5.h

main.c

core_cmFunc.h

core_cmInstr.h

cy_boot

CMSIS v3.20

core_<cpu>.h

startup_<device>.s

system_<device>.h

<device>.h

<user>.c/c++

core_cmFunc.h

core_cmInstr.h

core_cm4_simd.h

system_<device>.c

CMSIS custom

version

The following describe each file from the diagram:

◼ The Cm3Start.c and cm3gcc.ld files (part of the cy_boot component) contain Cortex-M3 device
startup code and interrupt vector tables and completely substitute CMSIS startup_<device>.s
template file.

◼ Vendor-specific device file <device>.h that includes CMSIS Core standard files is represented in
cy_boot component by core_cm3_psoc5.h.

◼ The core_cmInstr.h file defines intrinsic functions to access special Cortex-M instructions and
core_cmFunc.h file provides functions to access the Cortex-M core peripherals. These files were
added since CMSIS Core version 2.0.

◼ The core_cm4_simd.h file added to the CMSIS SIMD Instruction Access is relevant for Cortex-M4
only.

◼ system_<device>.h, system_<device>.c – Generic files for system configuration (i.e. processor
clock and memory bus system), are partially covered by Cm3Start.c.

Startup and Linking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 83

Manual addition of the CMSIS Core files

Beginning with PSoC Creator 2.2, the “Include CMSIS Core Peripheral Library Files” option is added to

the System tab of the DWR file. By default, this option is enabled and CMSIS Core version 4.0 files are

added to the project. This option should be disabled if you wish to manually add CMSIS Core files.

Un-check “Include CMSIS Core Peripheral Library Files” option on the System tab of the DWR file to

detach CMSIS 4.0 files from the cy_boot component.

Add the following CMSIS Core files to the project:

◼ core_cmInstr.h

◼ core_cmFunc.h

◼ core_cm3.h

Based on the CMSIS vendor-specific template file (<device>.h), create device header file, copy device

specific definitions from core_cm3_psoc5.h file and add following definitions at the top of the file:

#include <cytypes.h>

#define __CHECK_DEVICE_DEFINES

#define __CM3_REV 0x0201

#define __MPU_PRESENT 0

#define __NVIC_PRIO_BITS 3

#define __Vendor_SysTickConfig 0

Include the previously created vendor-specific device header file to the application.

High-Level I/O Functions

To use high-level input/output functions, like printf() or scanf(), the application must implement the base

I/O functions. The base I/O API depends on compiler and used C library:

◼ Keil – Library Reference on keil.com

◼ GCC - Red Hat newlib C Library on sourceware.org/newlib.

◼ MDK/RVDS – The ARM C and C++ Libraries on infocenter.arm.com.

◼ MDK/RVDS - The ARM C Micro-library on infocenter.arm.com.

The printf() Usage Model

The printf() function formats a series of strings and numeric values and builds a string to write to the

output stream. Its implementation relies on the following low-level library functions:

◼ Keil compiler use the putchar()

◼ GCC use _write()

◼ MDK/RVDS use _sys_write() or fputc(). The micro-library use fputc().

The application should implement these functions and call the communication component API to send

data via selected interface.

http://www.keil.com/support/man/docs/c51/c51_library.htm
https://sourceware.org/newlib/libc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938932518.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938940288.htmlThe%20ARM%20C%20Micro-library%20on%20http:/infocenter.arm.com/
http://www.keil.com/support/docs/788.htm
https://sourceware.org/newlib/libc.html#Syscalls
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938932518.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938931411.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475j/chr1358938940288.html

 Startup and Linking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 84

Preservation of Reset Status

PSoC 3/PSoC 5LP

The value of the reset status register (RESET_SR0) is read and cleared any time the device is booted.

That value is saved to a global SRAM variable.

Note The imprecise power-on-reset (IPOR), precision power-on-reset (PRES), external reset (XRES),

and low-voltage interrupt (LVI) reset sources clear the RESET_SR0 register. The watchdog reset (WRES)

and software initiated reset (SRES) sources preserve the RESET_SR0 register. For more information,

refer to the device datasheet and TRM.

Note When the voltage detection is enabled and the configured threshold is below VDDA/VDDD during

the software reset (SRES), the hardware reset (LVI reset) might occur. During the software reset, the LVI

reset might get enabled (default state of the RESET_CR3 register) and hence the hardware reset might

occur instead of the software reset.

Some PSoC 3 devices perform an additional software reset. If any other than a software device reset

previously occurred, it will reload the NVLs and apply the correct settings. This operation is transparent to

the normal boot process and will not interfere with bootloading, debugging, or normal device functionality.

See the device errata for more information.

To retain user-defined status that persists through many resets, use the CY_RESET_GP0 and

CY_RESET_GP1 bits in the RESET_SR0 register. The CyResetStatus variable is used to obtain value of

these bits after a device reset. These bits are used by Bootloader and Bootloadable projects and cannot

be used by user.

uint8 CyResetStatus

Name Description

CY_RESET_WD Watchdog reset

CY_RESET_SW Software reset

CY_RESET_GP0 General purpose bit 0

CY_RESET_GP1 General purpose bit 1

API Memory Usage

API memory usage varies significantly depending on the compiler, device, design-wide resource

configuration, and component configuration used in the design. The following tables provide the memory

usage for the entire empty project with the default design-wide resource configuration options.

The measurements have been done with an associated compiler configured in Release mode with

optimization set for Size. For a specific design, the map file generated by the compiler can be analyzed to

determine the memory usage.

The following data is provided for a blank design with default settings. Resource usage may increase if

any of unused by default cy_boot APIs are used in some particular project.

Startup and Linking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 85

PSoC 3 (Keil PK51)

Configuration
Flash Bytes

SRAM

Bytes
Stack

Default 1841 102 2

PSoC 5LP (GCC)

Configuration
Flash Bytes

SRAM

Bytes
Stack

Default 1032 397 10

Performance

Functions Execution Time

The API execution time varies depending on the compiler, device, and design-wide resource

configuration.

The measurements have been done with the default compiler (PK51 for PSoC 3 device and GCC for all

other devices) configured in Release mode with optimization set for Size. The project uses default design-

wide resource configuration for the measurements.

The following table provides the numbers for the functions whose execution time is considered to have

significant impact.

PSoC 3

Description Min Typ Max Units

Device initialization time (from reset to the main() entry) - 5.84 - ms

The CyPmSaveClocks() function execution time - 398.0 - μs

The CyPmRestoreClocks() function execution time - 1.036 - ms

The CyPmSleep() function execution before Sleep mode entry - 57.90 - μs

The CyPmSleep() function execution after Sleep mode exit - 30.48 - μs

The CyWriteRowFull() function execution time - 10.74 - ms

PSoC 5LP

Description Min Typ Max Units

Device initialization time (from reset to the main() entry) - 4.44 - ms

The CyPmSaveClocks() function execution time - 1085 - cycles

The CyPmRestoreClocks() function execution time - 2939 - cycles

The CyPmSleep() function execution before Sleep mode entry - 619 - cycles

 Startup and Linking

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 86

Description Min Typ Max Units

The CyPmSleep() function execution after Sleep mode exit - 311 - cycles

The CyWriteRowFull() function execution time - 12.1 - ms

Critical Sections Duration

The duration of critical sections (code sections with disabled interrupts) varies depending on the compiler,

device and, design-wide resource configuration.

The measurements have been done with the default compiler (PK51 for PSoC 3 device and GCC for all

other devices) configured in Release mode with optimization set for Size. The project used default design-

wide resource configuration for the measurements.

The following table provides the numbers for the functions whose critical section duration might have

meaningful impact.

PSoC 3

Description Conditions Min Typ Max Units

The CyBusClk_SetDivider() function critical section time Default - 34.16 - μs

The CyDisableInts() function critical section time Default - 62.5 - μs

The CyEnableInts() function critical section time Default - 48.8 - μs

The CyPmSleep() function critical section time Default - 82.32 - μs

The CyPmHibernate() function critical section time Default - 103.7 - μs

PSoC 5LP

Description Conditions Min Typ Max Units

The CyBusClk_SetDivider() function critical section time Default - 144 - cycles

The CyDisableInts() function critical section time Default - 56 - cycles

The CyEnableInts() function critical section time Default - 47 - cycles

The CyFlushCache() function critical section time Default - 93 - cycles

The CyPmSleep() function critical section time Default - 932 - cycles

The CyPmHibernate() function critical section time Default - 1718 - cycles

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 87

12 Watchdog Timer (WDT)

APIs

void CyWdtStart(uint8 ticks, uint8 lpMode)

Description: Enables the watchdog timer. The timer is configured for the specified count
interval, the CTW is cleared, the setting for low power mode is configured, and the
watchdog timer is enabled.

 The hardware implementation of the watchdog timer prevents any modification of
the timer once it has been enabled. It also prevents the timer from being disabled
once it has been enabled. This protects the watchdog timer from changes caused
by errant code. As a result, only the first call to CyWdtStart() after reset will have
any effect.

The watchdog counts each time the CTW reaches the period specified. The
watchdog must be cleared using the CyWdtClear() function before the watchdog
counts to three. The CTW is free running, so this will occur after between 2 and 3
timer periods elapse.

arameters: ticks: One of the four available timer periods. Once WDT enabled, the interval
cannot be changed.

Define Time

CYWDT_2_TICKS 4 – 6 ms

CYWDT_16_TICKS 32 – 48 ms

CYWDT_128_TICKS 256 – 384 ms

CYWDT_1024_TICKS 2.048 – 3.072 s

void CyWdtStart(uint8 ticks, uint8 lpMode) (continued)

Parameters lpMode: Low power mode configuration.

Define Effect

CYWDT_LPMODE_NOCHANGE No Change

CYWDT_LPMODE_MAXINTER Switch to longest timer mode during sleep / hibernate

CYWDT_LPMODE_DISABLED Disable WDT during sleep / hibernate

void CyWdtClear()

Description: Clears (feeds) the watchdog timer.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 88

13 MISRA Compliance

This chapter describes the MISRA-C:2004 compliance and deviations for the PSoC Creator cy_boot

component and code generated by PSoC Creator.

MISRA stands for Motor Industry Software Reliability Association. The MISRA specification covers a set of

122 mandatory rules and 20 advisory rules that apply to firmware design and has been put together by

the Automotive Industry to enhance the quality and robustness of the firmware code embedded in

automotive devices.

There are two types of deviations defined:

◼ project deviations – deviations that are applicable for all PSoC Creator components

◼ specific deviations – deviations that are applicable for the specific component

This section provides information on the following items:

◼ Verification Environment

◼ Project Deviations

◼ Documentation Related Rules

◼ PSoC Creator Generated Sources Deviations

◼ cy_boot Component-Specific Deviations

Verification Environment

This section provides MISRA compliance analysis environment description.

Component Name Version

Test Specification MISRA-C:2004 Guidelines for the use of the C language in critical
systems.

October 2004

Target Device PSoC 3 Production

PSoC 5LP Production

Target Compiler PK51 9.51

GCC 4.8.4

Generation Tool PSoC Creator 3.2

MISRA Checking Tool Programming Research QA C source code analyzer for Windows 8.1-R

Programming Research QA C MISRA-C:2004 Compliance Module
(M2CM)

3.2

MISRA Compliance

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 89

The MISRA rules 1.5, 2.4, 3.3, and 5.7 are not enforced by Programming Research QA C. The

compliance with these rules was verified manually by code review.

Project Deviations

A Project Deviations are defined as a permitted relaxation of the MISRA rules requirements that are

applied for source code that is shipped with PSoC Creator. The list of deviated rules is provided in the

table below.

MISRA-C:

2004 Rule

Rule Class

(R/A) [2]

Rule Description Description of Deviation(s)

1.1 R This rule states that code shall conform
to C ISO/IEC 9899:1990 standard.

Some C language extensions (like interrupt
keyword) relate to device hardware
functionality and cannot be practically
avoided.

In the main.c file that is generate by PSoC
Creator the non-standard main() declaration is
used: “void main()”. The standard declaration
is “int main()”

The number of macro definitions exceeds
1024 - program does not conform strictly to
ISO:C90.

5.1 R This rule says that both internal and
external identifiers shall not rely on the
significance of more than 31
characters.

The length of names based on user-defined
names depends on the length of the user-
define names.

5.6 A Verify that no identifier in one name
space have the same spelling as an
identifier in another name space, with
the exception of structure member and
union member names.

A name of the structure field may appear as
variable.

5.7 A Verify that no identifier name should is
reused.

Local variables with the same name may
appear in different functions. Aside from
commonly used names such as 'i', generated
API functions for multiple instances of the
same component will have identical local
variable names.

8.7 R Objects shall be defined at block scope
if they are only accessed from within a
single function.

The object 'InstanceName_initVar' is only
referenced by function 'InstanceName_Start',
in the translation unit where it is defined. The
intention of this publicly available global
variable is to be used by user application.

8.10 R All declarations and definitions of
objects or functions at file scope shall
have internal linkage unless external
linkage is required.

Components API are designed to be used in
user application and might not be used in
component API.

11.3 A This rule states that cast should not be
performed between a pointer type and
an integral type.

The cast from unsigned int to pointer does not
have any unintended effect, as it is a
consequence of the definition of a structure
based on hardware registers.

2 Required / Advisory

 MISRA Compliance

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 90

MISRA-C:

2004 Rule

Rule Class

(R/A) [2]

Rule Description Description of Deviation(s)

14.1 R There shall be no unreachable code. Some functions that are part of the component
API are not used within component API.
Components API are designed to be used in
user application and might not be used in
component API.

21.1 R Minimization of run-time failures shall
be ensured by the use of at least one
of:

a) static analysis tools/techniques;

b) dynamic analysis tools/techniques;

c) explicit coding of checks to handle
run-time faults.

Some components in some specific
configurations can contain redundant
operations introduced because of generalized
implementation approach.

Documentation Related Rules

This section provides information on implementation-defined behavior of the toolchains supported by

PSoC Creator. The list of deviated rules is provided in the table below.

MISRA-C:

2004 Rule

Rule Class

(R/A) [2]

Rule Description Description

1.3 R Multiple compilers and/or languages
shall only be used if there is a
common defined interface standard
for object code to which the
languages/compilers/assemblers
conform.

No multiple compilers and languages can be
used at a time for PSoC Creator projects.

The PK51 linker produces OMF-51 object
module format. The GCC linker produces
EABI format files. The RVDS and MDK linkers
produce files of ARM ELF format.

1.4 R The compiler/linker shall be checked
to ensure that 31 character
significance and case sensitivity are
supported for external identifiers.

PK51 and GCC treat more than 31 characters
of internal and external identifier length, and
are case sensitive (e.g., Id and ID are not
equal).

1.5 A Rule states that floating-point
implementation should comply with a
defined floating-point standard.

Floating-point arithmetic implementation
conforms to IEEE-754 standard.

3.1 R All usage of implementation-defined
behavior shall be documented.

For the documentation on PK51 and GCC
compilers, refer to the Help menu,
Documentation sub-menu, Keil and GCC
commands respectively.

3.2 R The character set and the
corresponding encoding shall be
documented.

The Windows-1252 (CP-1252) character set
encoding is used.

Some characters that are used for source
code generation in PSoC Creator are not
included in character set, defined by ISO-IEC
9899-1900 "Programming languages — C".

3.3 A This rule states that implementation of
integer division should be
documented.

When dividing two signed integers, one of
which is positive and one negative compiler
rounds up with a negative remainder.

3.5 R This rules requires implementation
defined behavior and packing of bit
fields be documented.

The use of bit-fields is avoided.

3.6 R All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

The C standard libraries provided with C51,
GCC, and RVCT have not been reviewed for
compliance. Some code uses memset and
memcpy. The compiler may also insert calls to
its vendor-specific compiler support library.

MISRA Compliance

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 91

PSoC Creator Generated Sources Deviations

This section provides the list of deviations that are applicable for the code that is generated by PSoC

Creator. The list of deviated rules is provided in the table below.

MISRA-C:

2004 Rule

Rule Class

(R/A) [2]

Rule Description Description of Deviation(s)

3.4 R All uses of the #pragma directive shall
be documented.

The #pragma directive is required to ensure
that the C51 compiler produces efficient code
for generated functions related to the
AMuxSeq component.

11.4 A This rule states that cast should not
be performed between a pointer to
object type and a different pointer to
object type.

CYMEMZERO8 and CYCONFIGCPY8 use
void * arguments for compatibility with
memset/memcpy but must use a pointer to an
actual type internally.

14.1 R Rule requires that there shall be no
unreachable code.

The CYMEMZERO, CYMEMZERO8,
CYCONFIGCPY, CYCONFIGCPY8,
CYCONFIGCPYCODE, and
CYCONFIGCPYCODE8 are often but not
always used.

15.2 R Switch cases must end with break
statements.

The code structure is required to ensure that
the C51 compiler produces efficient code for
generated functions related to the AMuxSeq
component.

15.3 R default must be the last clause in a
switch statement.

The code structure is required to ensure that
the C51 compiler produces efficient code for
generated functions related to the AMuxSeq
component.

17.4 R Array indexing shall be only allowed
form of pointer arithmetic.

The CYMEMZERO8 and CYCONFIGCPY8
have void * arguments for compatibility with
memset/memcpy.

19.7 A The rule says that function shall be
used instead of function-like macro.

The CYMEMZERO, CYMEMZERO8,
CYCONFIGCPY, CYCONFIGCPY8,
CYCONFIGCPYCODE, and
CYCONFIGCPYCODE8 macros are used to
call cymemzero, cyconfigcpy, and
cyconfigcpycode in a device-independent way.
The macros cannot be converted to functions
without significantly increasing the time and
memory required for each function call (this is
a limitation of C51). The macros have been
converted to functions for GCC/RVCT.

 MISRA Compliance

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 92

cy_boot Component-Specific Deviations [3]

This section provides the list of cy_boot component specific-deviations. The list of deviated rules is

provided in the table below.

MISRA-C:

2004 Rule

Rule Class

(R/A) [2]

Rule Description Description of Deviation(s)

1.2 R No reliance shall be placed on
undefined or unspecified behaviour.

For PSoC 5LP, the __cy_byte_align8 type,
__cy_region struct, __cy_region_num
constant, _exit and _sbrk functions are
defined.

5.3 R A typedef name shall be a unique
identifier.

For PSoC 5LP, the __cy_byte_align8 type is
defined.

6.3 A typedefs that indicate size and
signedness should be used in place of
the basic types.

For PSoC 5LP, the RealView C Library
initialization function __main(void) in startup
file (Cm0Start.c/Cm3Start.c) file returns value
of basic type 'int'.

8.2 R Whenever an object or function is
declared or defined, its type shall be
explicitly stated.

For PSoC3, the PSoC3_8051.h file has an
“sfr” statement to define a special function
register to be a consistent with the compiler
and assembler. 8.5 R There shall be no definitions of objects

or functions in a header file.

8.7 R Objects shall be defined at block
scope if they are only accessed from
within a single function.

For PSoC 5LP, the cySysNoInitDataValid
variable is intentionally declared as global in
Cm0Start.c/Cm3Start.c files to prevent linker
from CY_NOINIT section removal.

8.12 R When an array is declared with
external linkage, its size shall be
stated explicitly or defined implicitly by
initialization.

For PSoC 5LP (Cm0Start.c/Cm3Start.c), the
__cy_regions array of structures is declared
with unknown size.

8.8 R An external object or function shall be
declared in one and only one file.

For the PSoC 5LP, some objects is being
declared with external linkage in
Cm3Start.c/Cm3Start.c file and this
declaration is not in a header file.

10.1 R The value of an expression of integer
type shall not be implicitly converted
to a different underlying type under
some circumstances.

PSoC 5LP: CMSIS Core: An integer constant
of 'essentially unsigned' type is being
converted to signed type on assignment in
CMSIS Core hardware abstraction layer.

10.3 R The value of a complex expression of
integer type may only be cast to a
type that is narrower and of the same
signedness as the underlying type of
the expression.

The DMA API has a composite expression of
'essentially unsigned' type (unsigned char) is
being cast to a wider unsigned type, 'unsigned
long'.

14.3 R Before preprocessing, a null
statement shall only occur on a line by
itself; it may be followed by a
comment provided that the first
character following the null statement
is a white-space character.

The CYASSERT() macro has null statement is
located close to other code.

11.4 A A cast should not be performed
between a pointer to object type and a
different pointer to object type.

The DMA and Interrupt API use casts
between a pointer to object type and a
different pointer to object type.

3 The MISRA rules deviations of the CMSIS files are not documented here. Refer to the CMSIS documentation for the list of the

deviated rules.

MISRA Compliance

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 93

MISRA-C:

2004 Rule

Rule Class

(R/A) [2]

Rule Description Description of Deviation(s)

11.5 R A cast shall not be performed that
removes any const or volatile
qualification from the type addressed
by a pointer.

The volatile qualification is lost during pointer
cast to pointer to void before passing to the
memcpy() function.

14.7 R A function shall have a single point of
exit at the end of the function.

The CyPmSleep() and CyPmHibernate()
functions has complex conditional structure
and one more `return` path is added for PSoC
3/PSoC 5LP to return immediately if device is
not ready for low power mode entry.

17.4 R Array indexing shall be the only
allowed form of pointer arithmetic.

The DMA, Flash and Interrupt APIs use array
indexing that are applied to an object of
pointer type to access hardware registers,
buffer allocated by user and vector tables
correspondingly.

19.4 R C macros shall only expand to a
braced initializer, a constant, a
parenthesized expression, a type
qualifier, a storage class specifier, or a
do-while-zero construct.

The CYASSERT(),
INTERRUPT_DISABLE_IRQ,
INTERRUPT_ENABLE_IRQ,
CyGlobalIntEnable, and CyGlobalIntDisable
macro defines a braced code statement block.

19.7 A A function should be used in
preference to a function-like macro.

Deviated since function-like macros are used
to allow more efficient code.

20.2 R The names of standard library
macros, objects and functions shall
not be reused.

For PSoC 5LP, the __cy_byte_align8 type,
__cy_region struct, __cy_region_num
constant, _exit and _sbrk functions are
defined.

20.5 R The error indicator errno shall not be
used.

Caused by use of the error indicator errno
used by the sbrk() function. It is used to report
errors to the malloc() function if no heap
memory is available.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 94

14 System Timer (SysTick)

Functional Description

The SysTick timer is part of the Cortex M3 (PSoC 5LP) devices. The timer is a down counter with a 24-bit

reload/tick value that is clocked by the System clock. The timer has the capability to generate an interrupt

when the set number of ticks expires and the counter is reloaded. This interrupt is available as part of the

Nested Vectored Interrupt Controller (NVIC) for service by the CPU and can be used for general purpose

timing control in user code.

Since the timer is independent of the CPU (except for the clock), this can be handy in applications

requiring precise timing that don’t have a dedicated timer/counter available for the job.

Refer to the SysTick section (Section 4.4) of the ARM reference guide for complete details on the

registers and their usage.

APIs

Functions

Function Description

CySysTickStart() Configures and starts the SysTick timer.

CySysTickInit() Configures the SysTick timer.

CySysTickEnable() Enables the SysTick timer and its interrupt.

CySysTickStop() Stops the SysTick timer.

CySysTickEnableInterrupt() Enables the SysTick interrupt.

CySysTickDisableInterrupt() Disables the SysTick interrupt.

CySysTickSetReload() Sets value the counter is set to on startup and after it reaches zero.

CySysTickGetReload() Returns SysTick reload value.

CySysTickGetValue() Gets current SysTick counter value.

CySysTickSetClockSource() Sets the clock source for the SysTick counter.

CySysTickGetCountFlag() Returns the SysTick count flag value.

CySysTickClear() Clears the SysTick counter for well-defined startup.

CySysTickSetCallback() Sets the address(es) to the function(s) that will be called on a
SysTick interrupt.

CySysTickGetCallback() Gets the specified callback pointer.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0497a/Babieigh.html

System Timer (SysTick)

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 95

void CySysTickStart(void)

Description: Configures the SysTick timer to generate an interrupt every 1 ms by calling the
CySysTickInit() function and starts the timer by calling the CySysTickEnable()
function.

Refer to the corresponding function description for the details.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickInit(void)

Description: Initializes the callback addresses with pointers to NULL, associates the SysTick
system vector with the function that is responsible for calling registered callback
functions, configures SysTick timer to generate interrupt every 1 ms.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

The 1 ms interrupt interval is configured based on the frequency determined by
PSoC Creator at build time. If System clock frequency is changed in runtime, the
CyDelayFreq() with the appropriate parameter should be called to ensure that
actual frequency used for SysTick reload value calculation.

void CySysTickEnable(void)

Description: Enables the SysTick timer and its interrupt.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickStop(void)

Description: Stops the system timer (SysTick).

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickEnableInterrupt(void)

Description: Enables the SysTick interrupt.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickDisableInterrupt(void)

Description: Disables the SysTick interrupt.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

 System Timer (SysTick)

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 96

void CySysTickSetReload(uint32 value)

Description: Sets value the counter is set to on startup and after it reaches zero.

Parameters: value: Counter reset value. Valid range [0x0-0x00FFFFFF].

For example, if the SysTick timer is configured to be clocked off the 48 MHz
System Clock and interrupt every 100 us is desired, the function parameter should
be 4,800 (48,000,000 Hz multiplied by 100/1,000,000 seconds).

uint32 CySysTickGetReload(void)

Description: Returns SysTick reload value.

Side Effects and
Restrictions:

Returns SysTick reload value.

uint32 CySysTickGetValue(void)

Description: Gets current SysTick counter value.

Return Value: Returns SysTick counter value.

void CySysTickSetClockSource(uint32 clockSource)

Description: Sets the clock source for the SysTick counter.

Parameters: uint32 clockSource:

Constant Description

CY_SYS_SYST_CSR_CLK_SRC_SYSCLK SysTick is clocked by the
System clock.

CY_SYS_SYST_CSR_CLK_SRC_LFCLK SysTick is clocked by the low
frequency clock. (ILO 100 KHz
for PSoC 5LP).

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

uint32 CySysTickGetClockSource(uint32 clockSource)

Description: Returns the current clock source of the SysTick counter.

Return Value:

Constant Description

CY_SYS_SYST_CSR_CLK_SRC_SYSCLK SysTick is clocked by the
System clock.

CY_SYS_SYST_CSR_CLK_SRC_LFCLK SysTick is clocked by the low
frequency clock (ILO 100 KHz
for PSoC 5LP).

System Timer (SysTick)

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 97

uint32 CySysTickGetCountFlag(void)

Description: The count flag is set once SysTick counter reaches zero. The flag is cleared on
read.

Return Value: Returns non-zero value if the counter is set, otherwise zero is returned.

Side Effects and
Restrictions:

Clears SysTick count flag if it was set.

void CySysTickClear(void)

Description: Clears the SysTick counter for well-defined startup. This function should be called
if SysTick configuration (reload value or timer clock source) is changed. The
function is called as part of the CySysTickStart() execution.

(void *) CySysTickSetCallback(uint32 number, void(*CallbackFunction)(void))

Description: This function allows up to five user -defined interrupt service routine functions to
be associated with the SysTick interrupt. These are specified through the use of
pointers to the function.

Parameters: uint32 number: The number of the callback function addresses to be set. The valid
range is from 0 to 4.

 void(*CallbackFunction(void): A pointer to the function that will be associated with
the SysTick ISR for the specified number.

Return Value: Returns the address of the previous callback function.

NULL is returned if the specified function address in not initialized.

Side Effects and
Restrictions:

The registered callback functions will be executed in the interrupt.

 (void *) CySysTickGetCallback(uint32 number)

Description: The function get the specified callback pointer.

Parameters: uint32 number: The number of callback function address to get. The valid range is
from 0 to 4.

Return Value: Returns the address of the specified callback function.

The NULL is returned if the specified address in not initialized.

Global Variables

Function Description

uint32 cySysTickInitVar Indicates whether or not the SysTick has been initialized. The variable is
initialized to 0 and set to 1 the first time CySysTickStart() is called.

This allows the component to restart without reinitialization after the first
call to the CySysTickStart() routine.

If reinitialization of the SysTick is required, call CySysTickInit() before
calling CySysTickStart(). Alternatively, the SysTick can be reinitialized by
calling the CySysTickInit() and CySysTickEnable() functions.

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 98

15 cy_boot Component Changes

Version 5.90

This section lists and describes the major changes in the cy_boot component version 5.90:

Description of Version 5.90 Changes Reason for Changes / Impact

Component version updated only; no other
changes.

This Component was updated to be in sync with
the PSoC 4 Component and datasheet.

Version 5.80

This section lists and describes the major changes in the cy_boot component version 5.80:

Description of Version 5.80 Changes Reason for Changes / Impact

Component version updated only; no other
changes.

This Component was updated to be in sync with
the PSoC 4 Component and datasheet.

Version 5.70

This section lists and describes the major changes in the cy_boot component version 5.70:

Description of Version 5.70 Changes Reason for Changes / Impact

Updated API section.

Updated MISRA section.

Datasheet changes.

Added new API CyFlash_EraseRow. Enhancements.

Version 5.60

This section lists and describes the major changes in the cy_boot component version 5.60:

Description of Version 5.60 Changes Reason for Changes / Impact

Updated the API Memory Usage numbers. Datasheet changes.

Updated CMSIS-Core version from 4.30 to 5.0.

GCC compiler support updated to v5.4.

cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 99

Version 5.50

This section lists and describes the major changes in the cy_boot component version 5.50:

Description of Version 5.50 Changes Reason for Changes / Impact

Added project deviation for the MISRA rule 5.6. Datasheet changes.

Updated the API Memory Usage numbers.

New APIs added: CySysTickGetClockSource.

Default interrupt handler for PSoC 5LP is now
updated to catch memory allocation failure errors.

Version 5.40

This section lists and describes the major changes in the cy_boot component version 5.40:

Description of Version 5.40 Changes Reason for Changes / Impact

Updated CMSIS-Core version from 4.10 to 4.30.

Version 5.30

This section lists and describes the major changes in the cy_boot component version 5.30:

Description of Version 5.30 Changes Reason for Changes / Impact

Updated startup code with the interrupt vector
registers initialization to the default interrupt hander.

To prevent situation when uninitialized vector
breaks device functionality in an unexpected way.

Updated CMSIS-Core version from 4.00 to 4.10.

Updated trip point voltage in the
CyVdLvDigitEnable() function description.

Version 5.20

This section lists and describes the major changes in the cy_boot component version 5.20:

Description of Version 5.20 Changes Reason for Changes / Impact

Updated linker scripts for adding checksum exclude
section. See Bootloader/Bootloadable components
datasheet for the details.

Provided method to store data in the flash section
with the bootloadable application checksum not
being computed over it.

Fixed CYSWAP_ENDIAN16() and
CYSWAP_ENDIAN32() for signed parameters.

Defect fix.

Datasheet update. Added Macro Callbacks section.

Version 5.10

This section lists and describes the major changes in the cy_boot component version 5.10:

Description of Version 5.10 Changes Reason for Changes / Impact

Added support for the future silicon. No immediate changes other than version change
to the component.

 cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 100

Description of Version 5.10 Changes Reason for Changes / Impact

Datasheet update. Updated description of the CyFlushCache()
function. Clarify when the function should be
called and why it should be called.

Version 5.0

This section lists and describes the major changes in the cy_boot component version 5.0:

Description of Version 5.0 Changes Reason for Changes / Impact

New example projects for flash/EEPROM, voltage
detection, interrupts, unique id have been added.

System Reference Guide is now divided into

System Reference Guide - PSoC 3/PSoC 5LP

System Reference Guide - PSoC 4

System Reference Guide - DMA (PSoC 4)

System Reference Guide - CyLFClk (PSoC 4)

This change was done for ease of use of content.

New CyGetUniqueId() function support for all PSoC
families.

The new API assists users in identifying each
PSoC device on the field using an unique
identification number.

Updated CMSIS-Core version from 3.20 to 4.0.

Removed the Bootloader Migration section. Section was for older versions of Creator and not
applicable to v5.0.

Added CyPmHibernateEx(uint16 wakeupSource)
function.

The function puts device into Hibernate mode
with the following wake up source can be
configured: PICU interrupt, Comparator0,
Comparator1, Comparator2, and Comparator3
output. Function call
CyPmHibernateEx(CY_PM_HIB_SRC_PICU) will
act in the same way as CyPmHibernate().

Voltage Detect API: Updated implementation of the
CyVdStickyStatus() and CyVdRealTimeStatus()
functions to ensure that a zero is returned for bits
not used in the mask parameter. Also, added the
shadow register in CyVdStickyStatus() function, so
only the bits passed in the parameter will be
cleared.

Voltage Detect API: Updated the section with the
more detailed description of the API. Clarified the
way associated interrupts should be handled.

Voltage Detect API: Updated CyVdLvDigitEnable(),
CyVdLvAnalogEnable() and
CyVdHvAnalogEnable() function to not enable
corresponding interrupts.

The Interrupt component’s API should be used to
register the interrupt service routine and to
enable/disable associated interrupt.

cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 101

Description of Version 5.0 Changes Reason for Changes / Impact

Voltage Detect API: Updated implementation of the
CyVdLvDigitEnable(), CyVdLvAnalogEnable(),
CyVdLvDigitDisable(), CyVdLvAnalogDisable(),
CyVdHvAnalogEnable(), and
CyVdHvAnalogDisable() functions to use
CyVdStickyStatus() with the corresponding
parameter instead of direct register read-back. The
register is cleared on read.

Omit unintentional clearing of the status bits.

Flash API: Fixed the value of the
CY_EEPROM_SIZEOF_ARRAY macro definition to
report size of the EEPROM array instead of the size
of the EEPROM section.

PM API: Updated implementation of the
CyPmReadStatus() function to ensure that a zero is
returned for bits not used in the mask parameter.

PM API: PSoC 5LP: Replaced 'asm' with '__asm'. To support -std GCC options.

DMA API: Masked lowest bit in the return value of
the CyDmacError() as it is not used.

PSoC 5LP: SysTick API: Fixed incorrect mask
being applied in the CySysTickGetValue().

To ensure that correct values is returned.

PSoC 5LP: Bootloader: Fixed the issue when
bootloadable application was not allowed to be
placed in the first available flash row when the
“Manual application image placement” option is
enabled in the Bootloadable component.

Added support for the combination project type. See
Bootloader component datasheet for the details.

Added support for a new functionality of the
Bootloader component.

Corrected references to #defines in
CySysTickSetClockSource() function

Version 4.20

This section lists and describes the major changes in the cy_boot component version 4.20:

Description of Version 4.20 Changes Reason for Changes / Impact

Added support for the PSoC 4100 BLE and
PSoC 4200 BLE families.

Added CySysClkSetLfclkSource() function for the
LFCLK clock source selection.

New device support.

PSoC 3/PSoC5LP: Updated CyWriteRowFull()
function implementation to return
CYRET_BAD_PARAM if invalid parameters values
are passed.

PSoC 3: Fixed a defect that caused the
CyResetStatus global variable to lose its value on
bootloadable application entry.

 cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 102

Description of Version 4.20 Changes Reason for Changes / Impact

PSoC 4: The implementation of the
CY_SYS_PINS_READ_PIN macro was optimized
in order to increase performance.

PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Updated implementation of the
CySysClkIloStop() to ensure proper pulse length on
LFCLK.

PSoC 4100/PSoC 4200: WDT API: Fixed the defect
in CySysWdtWriteClearOnMatch() that caused clear
on match feature fails to be disabled.

PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Updated CySysPmStop() function
implementation to match hardware requirements:
the software delay was replaced with 2 register
read-backs and corrected the procedure of the low
power mode entry.

PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Fixed the order of the Stop mode entry
in the CySysPmStop() function to ensure that Stop
mode token is set at the beginning of the low power
mode entry.

Omit the situation when GPIO pins remain frozen
after the reset if reset occurred after IO pin freeze
but before Stop mode entry.

Added following attribute macros: CY_PACKED,
CY_PACKED_ATTR and CY_INLINE.

The declaration of the IntDefaultHandler created in
CyLib.h.

Previously, the IntDefaultHandler was declared in
both interrupt source file and Cm0Start.c files.

PSoC 4000: Corrected the lower bound of the
HFCLK frequency change from the current IMO
frequency divided by 8 to divided by 4 in the wside
effects section of the CySysFlashWriteRow()
function.

PSoC 3/ PSoC 5LP: Updated implementation of the
CySetTemp() function in order to improve execution
time of the first call after Power-On-Reset (POR).

Significantly improved the first Flash write after
POR.

PSoC 4/PSoC 5LP: Added sbrk() function, which is
used by malloc() and other heap-utilizing functions
to check for available memory.

The fix ensures that malloc(), et al, now correctly
handle heap overflow.

Note that some projects will now fail to execute
due to a lack of available heap. The resolution is
to increase the heap size in the Design-Wide
Resources System Editor (<project>.cydwr file),
and re-build the project.

PSoC 4/ PSoC 5LP: Added the following MISRA
rule deviations: 20.5.

Caused by use of the error indicator errno used
by sbrk() function. It is used to report error to the
malloc() function if no heap memory available.

cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 103

Description of Version 4.20 Changes Reason for Changes / Impact

PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE:

• Updated CySysWdtEnable() function
implementation to ensure that WDT is
enabled upon function exit;

• Updated CySysWdtWriteMatch() function
implementation to ensure that match value is
updated properly: add delay before (ensures
that last update applied properly) and after
value change (ensures that match update
synchronization started).

• Updated CySysWdtDisable() function
implementation to ensure that WDT is
disabled upon function exit.

PSoC 4/PSoC 5LP: Updated IAR linker script file to
eliminate warning generated by the IAR EW-ARM
v7.10.

PSoC 4: The CySysFlashWriteRow() function return
type changed from cystatus to uint32.

To follow hardware-defined error codes. The
basic behavior remains the same: zero for
success and non-zero for any type of failure.

PSoC 5LP: The CyFlash_SetWaitCycles() function
is updated with 80 MHz parts support.

PSoC 4/PSoC 5LP: Added System Timer (SysTick)
API.

PSoC 3/PSoC 5LP: Flash/EEPROM API: updated
implementation to eliminate requirement to call
CySetFlashEEBuffer() function, if the Flash ECC
feature is disabled.

No need to allocate buffer and pass it to
CySetFlashEEBuffer() for both Flash and
EEPROM programming.

PSoC 3/PSoC 5LP: Flash API: added
CY_EEPROM_NUMBER_SECTORS and
CY_EEPROM_SIZEOF_SECTOR.

Defined macros for the number of EEPROM
sectors and size of EEPROM sector.

PSoC 4/PSoC 5LP: Interrupt API: added macros for
the CyIntSetSysVector() and CyIntGetSysVector()
functions exception type numbers.

PSoC 3: The CyPmSleep() and CyPmHibernate()
functions disable clock to the interrupt controller
before Sleep and Hibernate mode entry and re-
enable on wakeup.

Satisfy interrupt controller usage model.

PSoC 3/PSoC 5LP: Updated CyFlash_Start() and
CyEEPROM_Start() functions implementation.

To ensure that EEPROM and Flash are ready for
operation on corresponding function exit.

PSoC 5LP: Changed CyFlushCache()
implementation.

To use Instruction Synchronization Barrier (ISB)
instruction instead of multiple no operation
instructions.

PSoC 4: The CY_SYS_PINS_READ_PIN macro
was optimized for the better performance.

PSoC 4200/PSoC 4100: updated
CySysClkWriteImoFreq() function for better
performance.

 cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 104

Description of Version 4.20 Changes Reason for Changes / Impact

PSoC 4: Added the following MISRA rule
deviations: 19.12 and 19.13.

Added the possibility for existing PSoC 3 and
PSoC 5LP per-pin APIs to be used in PSoC 4
designs.

Updated the following MISRA rule deviations:
12.10, 12.13, 13.2, and 13.5.

PSoC 4000: Update WDT API description to clarify
that CySysWdtEnable() and CySysWdtDisable()
correspondingly enables and disables the watchdog
timer reset generation.

PSoC 4000: Fixed the implementation of the
CySysWdtReadIgnoreBits() to return correct
number of the ignored bits in the WDT counter.

PSoC 3/PSoC 5LP: removed LVI/HVI reset
constants for the CyResetStatus global variable in
section “Preservation of Reset Status”.

The LVI and HVI resets are not reported by
CyResetStatus variable.

PSoC 4100/PSoC 4200: Power Management API:
Updated CySysPmDeepSleep() function to bypass
the flash accelerator before Deep Sleep mode entry
and restore it upon wakeup.

Cypress identified a defect with the Flash write
functionality upon wakeup from deep-sleep in
PSoC 4100 and PSoC 4200 devices. The
corrupted data has the potential to be sent to the
CPU on device wakeup.

Version 4.11

This section lists and describes the major changes in the cy_boot component version 4.11:

Description of Version 4.11 Changes Reason for Changes / Impact

The CySysFlashWriteRow() function now checks
the data to be written and, if necessary, modifies it
to have a non-zero checksum. After writing to Flash,
the modified data is replaced (Flash program) with
the correct (original) data.

Cypress identified a defect with the Flash write
functionality of the PSoC 4000, PSoC 4100, and
PSoC 4200 devices. The CySysFlashWriteRow()
function in the cy_boot [v4.0 and v4.10]
component fails to write a row of flash memory if
the data to be written has a zero in the lower 32-
bits of the checksum.

Version 4.10

This section lists and describes the major changes in the cy_boot component version 4.10:

Description of Version 4.10 Changes Reason for Changes / Impact

PSoC 4: Added CySysGetResetReason() function. Reports the cause for the latest reset(s) that
occurred in the system.

Added support for the PSoC 4000 family. New device support.

PSoC 3: Added reentrancy support for the
CySpcLock() and CySpcUnlock() functions.

PSoC 3/ PSoC 5LP: Fixed the defect in
CyPmRestoreClocks() function, that can might to
the device halt during the function execution, in
some clock system configurations, when PLL is

not sourced by IMO and IMO is manually stopped
by user code.

cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 105

Description of Version 4.10 Changes Reason for Changes / Impact

PSoC 4: Added note that enabling or disabling a
WDT requires three LFCLK cycles to come into
effect, during that period the SYSCLK should be
available.

The device should not put into Deep Sleep mode
during that period.

PSoC 4: Added note that, after waking from Deep
Sleep, the WDT internal timer value is set to zero
until the ILO loads the register with the correct
value.

This led to an increase in low-power mode current
consumption.

The work around is to wait for the first positive
edge of the ILO clock before allowing the
WDT_CTR_* registers to be read by
CySysWdtReadCount() function.

Added note to the Working with Flash and
EEPROM section with the information that CPU
code execution can be halted till the flash write is
complete.

Added note to the Working with Flash and
EEPROM section with the information that power
manager will not put the device into a low power
state if the system performance controller (SPC) is
executing a command.

PSoC 3 / PSoC 5LP: The CyPmRestoreClocks()
implementation was enhanced by polling status and
proceed as soon as PLL is locked. Added merge
section to add ability of handling cases when
predefined timeout is not enough.

PSoC 4: Fixed a defect in CySysWdtClearInterrupt()
that caused unintentional clearing of the WDT
interrupt status bit.

Version 4.0

This section lists and describes the major changes in the cy_boot component version 4.0:

Description of Version 4.0 Changes Reason for Changes / Impact

Added note to the Flash and EEPROM section
about unavailability of the Store Configuration Data
in ECC Memory DWR option for the bootloader
project type.

Added note to the Working with Flash and
EEPROM section that when writing Flash, data in
the instruction cache can become stale.

Call CyFlushCache() to invalidate the data in
cache and force fresh information to be loaded
from Flash.

Fixed issue in the CyDmaChEnable() and
CyDmaChDisable() functions.

If DMA request occurred during these functions,
the DMA channels configuration could be
corrupted. The APIs were changed to address
this problem.

Removed references to PSoC 5 device. PSoC 5 has been replaced by PSoC 5LP.

PSoC Creator Generated Sources Deviations
section was updated with the MISRA deviations
related to the AMuxSeq component.

 cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 106

Description of Version 4.0 Changes Reason for Changes / Impact

The CY_IMO_FREQ_74MHZ parameter was added
to the CyIMO_SetFreq() function.

Support of the 80 MHZ PSoC 5LP devices.

PSoC 4: Added CyExitCriticalSection() function call
after WFI instruction in the CySysPmHibernate()
function.

If any interrupt occurred between
CyEnterCriticalSection() and WFI instruction
execution, the device could skip low power mode
entry request and continue code execution with
global interrupts disabled.

Version 3.40 and Older

Version 3.40

This section lists and describes the major changes in the cy_boot component version 3.40:

Description of Version 3.40 Changes Reason for Changes / Impact

Added PSoC 4 device support. New device support.

PSoC 3: Updated CyPmSleep() function description
with the information that hardware buzz must be
disabled before sleep mode entry.

As hardware buzz is required for LVI, HVI, and
Brown Out detect operations – they must be
disabled before sleep mode entry and restored on
wakeup. If LVI or HVI is enabled, CyPmSleep() will
halt device if project is compiled in debug mode.

Using hardware buzz in conjunction with other
device wakeup sources can cause the device to
lockup, halting further code execution. Refer to
the device errata for more information.

Version 3.30

This section lists and describes the major changes in the cy_boot component version 3.30:

Description of Version 3.30 Changes Reason for Changes / Impact

Updates to support PSoC Creator 2.2.

Added MISRA Compliance section.

Added Low Voltage Analog Boost Clocks section.

New feature for the SC-based (TIA, Mixer, PGA
and PGA_Inv) components.

Added requirement about interrupt configuration,
when interrupt is sources from PICU and used as a
wakeup event.

For PSoC 5LP, the interrupt component
connected to the wakeup source may not use the
"RISING_EDGE" detect option. Use the "LEVEL"
option instead.

The delay between Bus clock and analog clocks
configuration save/restore moved from
CyPmSleep() and CyPmHibernate() functions to
CyPmSaveClocks() / CyPmRestoreClocks().

This modification decrease CyPmSleep() and
CyPmHibernate() functions execution time.

The components that use analog clock must not
be used after CyPmSaveClocks() execution till
the clocks configuration will be restored by
CyPmRestoreClocks().

Added float32 and float64 data types. The type
float64 is not available for PSoC 3 devices.

cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 107

Version 3.20

This section lists and describes the major changes in the cy_boot component version 3.20:

Description of Version 3.20 Changes Reason for Changes / Impact

Many minor edits throughout the document to
distinguish features of PSoC 5 and PSoC 5LP
devices.

Improve PSoC 5 and PSoC 5LP documentation.

The interface of the CyIMO_SetFreq() function was
updated for PSoC 5LP to support 62 and 72 MHz
frequencies.

Added interface to configure IMO to 62 and 72
MHz on PSoC 5LP.

Version 3.10

This section lists and describes the major changes in the cy_boot component version 3.10:

Description of Version 3.10 Changes Reason for Changes / Impact

The Bootloader system was redesigned in cy_boot
version 3.0 to separate the Bootloader and
Bootloadable components. The change is listed
here as well for migrating from older versions.

See Bootolader Migration section in cy_boot
version 3.10 System Reference Guide.

A few edits were applied to the Voltage Detect
APIs: fixed a typo in the register definition, added
CyVdLvDigitEnable() function threshold parameter
mask to protect from invalid parameter values,
updated CyVdLvDigitEnable() and
CyVdLvAnalogEnable() functions to use delay
instead of while loop during hardware initialization.

To improve the overall implementation of these
APIs.

Minor updates to the CyPmSleep() function. Better support of latest PSoC 3 devices.

Version 3.0

This section lists and describes the major changes in the cy_boot component version 3.0:

Description of Version 3.0 Changes Reason for Changes / Impact

The Bootloader system was redesigned to separate
the Bootloader and Bootloadable components.

See Bootolader Migration section in cy_boot
version 3.0 System Reference Guide.

The CyPmSleep() function implementation was
updated to preserve/restore PRES state
before/after Sleep mode. The support of the
HVI/LVI functionality added.

New functionality support.

Added following Voltage Detect APIs:
CyVdLvDigitEnable(),CyVdLvAnalogEnable(),CyVd
LvDigitDisable(),CyVdLvAnalogDisable(),CyVdHvA
nalogEnable(),CyVdHvAnalogDisable(),CyVdSticky
Status() and CyVdRealTimeStatus().

Added voltage monitoring APIs.

The implementation of the Flash API was slightly
modified as the SPC API used in Flash APIs was
refactored.

The implementation quality improvements.

 cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 108

Description of Version 3.0 Changes Reason for Changes / Impact

The implementation of the CyXTAL_32KHZ_Start(),

CyXTAL_32KHZ_Stop(),
CyXTAL_32KHZ_ReadStatus() and

CyXTAL_32KHZ_SetPowerMode() APIs was
updated.

Added additional timeouts to ensure proper block
start-up.

The implementation of the CyXTAL_Start() function
for PSoC 5 parts was changed. For more
information on function see Clocking section.

Changes were made to make sure that MHZ
XTAL starts successfully on PSoC 5 parts.

The following APIs were removed for PSoC 5 parts:

CyXTAL_ReadStatus(),

CyXTAL_EnableErrStatus(),

CyXTAL_DisableErrStatus(),

CyXTAL_EnableFaultRecovery(),

CyXTAL_DisableFaultRecovery().

The functionality provided within these APIs is not
supported by the PSoC 5 part.

The CyDmacConfigure() function is now called by
the startup code only if DMA component is placed
onto design schematic.

Increase device startup time in case if DMA is not
used within design. The CyDmacConfigure()
function should be called manually if DMA
functionality is used without DMA component.

The CyXTAL_32KHZ_ReadStatus() function
implementation was changed by removing digital
measurement status return.

The analog status measurement is the only
reliable source.

Updated description of following APIs:
CyFlash_SetWaitCycles().

Changes were made to improve power mode
configuration.

The address of the top of reentrant stack was
decremented from CYDEV_SRAM_SIZE to
(CYDEV_SRAM_SIZE - 3) for PSoC 3.

Prevent rewriting CyResetStatus variable with the
parameters and/or local variables of the reentrant
function during its execution.

The CyIMO_SetFreq() function implementation was
updated by removing support of 74 and 62 MHz
parameters for PSoC 5 parts.

Removal of the functionality that is not supported
by device.

The minimal P divider value for the
CyPLL_OUT_SetPQ() was risen from 4 up to 8.

To meet hardware requirements

The CyXTAL_SetFbVoltage()/SetWdVoltage() were
added for PSoC 5LP devices.

The functionality provided by these APIs is
available in PSoC 5LP.

The description of the CyWdtStart() was updated. Added notes on WDT operation during low power
modes for PSoC 5.

The implementation of the CyPmSleep() for PSoC 5
was changed not to hold CTW in reset on wakeup.

Not putting CTW in reset state on wakeup allows
to combine CTW usage in both Active and low
power modes for PSoC 5.

The Preservation of Reset Status section was
updated with more detailed information.

The software reset behavior of other resets is
explained. Explained how the reset status
variable can be used.

Updated description of following APIs:
CyMasterClk_SetDivider(),CyWdtStart(),CyWdtStart
().

To reflect implementation better.

The Startup and Linking section was updated. The
information on using custom linker script was
added.

To provide more information on device operation.

cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 109

Description of Version 3.0 Changes Reason for Changes / Impact

Following macros were removed: CYWDT_TICKS
CYWDT_CLEAR, CYWDT_ENABLE
CYWDT_DISABLE_AUTO_FEED.

The CyWdtStart() and CyWdtClear() should be
used instead.

The CyCpuClk_SetDivider() was removed for PSoC
5 devices.

The hardware does not support this functionality.

The cystrcpy(), cystrlen(), CyGetSwapReg16() and
CySetSwapReg16() APIs were removed.

The library functions should be used.

The return value description for
CyEnterCriticalSection() function was updated for
PSoC 5.

Function returns 0 if interrupts were previously
enabled or 1 if interrupts were previously
disabled.

Added all APIs with the CYREENTRANT keyword
when they are included in the .cyre file.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which
functions are candidates.

This change is required to eliminate compiler
warnings for functions that are not reentrant used
in a safe way: protected from concurrent calls by
flags or Critical Sections.

Added PSoC 5LP support

Version 2.40 and Older

Version 2.40

This section lists and describes the major changes in the cy_boot component version 2.40:

Description of Version 2.40 Changes Reason for Changes / Impact

Updated the CyPmSleep() and CyPmHibernate()
APIs.

Changes were made to improve power mode
configuration.

Version 2.30

This section lists and describes the major changes in the cy_boot component version 2.30:

Description of Version 2.30 Changes Reason for Changes / Impact

CyIntEnable and CyIntDisable functions have been
changed to be CYREENTRANT by default.

Many components require CyIntEnable and
CyIntDisable to be reentrant and these
components have no way to cause that to
happen. This means you no longer need to
populate a cyre file for these functions that you do
not call.

 cy_boot Component Changes

PSoC® Creator™ PSoC 3/PSoC 5LP System Reference Guide,
Document Number: 002-28380 Rev. ** 110

Description of Version 2.30 Changes Reason for Changes / Impact

The implementation of CyPmSleep() and
CyPmAltActive() functions were modified by
removing 32 KHz ECO,100 KHz and 1 KHz ILO
power mode configuration before device low power
mode entry.

User was made responsible for clock power
modes configuration during Sleep and Alternate
Active mode.

The CyILO_SetPowerMode() and
CyXTAL_32KHZ_SetPowerMode() can be used
to configure clock power modes.

The information regarding user responsibility of
clock power mode configuration was added at the
PM API section.

The implementation of the CyPmSaveClocks() was
updated to set IMO clock frequency to 48 MHz
when "Enable Fast IMO during startup" is enabled,
and to 12 MHz otherwise. The IMO frequency is
always set to 12 MHz just before the low power
mode entry and restored immediately after wakeup.
The CyPmRestoreClocks() restores original value of
the IMO clock.

The IMO value should match FIMO and FIMO is
always 12 MHz.

The implementation of the CyPmRestoreClocks()
function was updated by removing restoring MHz
ECO and PLL disabled state.

The CyPmRestoreClocks() function is expected to
be called only after CyPmSaveClocks(), while the
last one always disables MHz ECO and PLL.

Global interrupts are disabled on
CyPmSleep()/CyPmHibernate() entry and restored
before return from the function.

Interrupts are disabled to prevent their occurrence
before the state of the device has been restored.

Updated architecture- and silicon-specific #defines
to be used across the content.

Improved performance of non-DMA configuration on
8051 devices.

These modifications decrease the startup time
and slightly reduce consumption of code memory
and internal data memory.

The implementation of the CyPmRestoreClocks()
was updated for PSoC 5 silicon. The megahertz
crystal is given 130 ms to stabilize. Its readiness is
not verified after the hold-off timeout.

These modifications increase crystal startup time,
but ensure that crystal is ready to be used.

The power mode of the source clocks for the timer
used as the wakeup timer was removed from PM
API functions.

Before calling PM API function, you must
manually configure the power mode of the source
clocks for the timer that will be used as the
wakeup timer.

PSoC Creator Power Management section was
updated.

More detailed information on Power Management
API usage was added.

Version 2.21

Version 2.21 and older are obsolete.

	PSoC 3/PSoC 5LP System Reference Guide
	cy_boot Component v5.90
	cy_boot Component v5.90

	Contents
	1 Introduction
	Conventions
	References
	Sample Firmware Source Code
	Revision History

	2 Standard Types, APIs, and Defines
	Base Types
	Hardware Register Types
	Compiler Defines
	Keil 8051 Compatibility Defines
	Return Codes
	Interrupt Types and Macros
	Interrupt vector address type

	Intrinsic Defines
	Device Version Defines
	Variable Attributes
	Instance APIs
	General APIs
	`=instance_name`_InitVar
	void `=instance_name`_Start (void)
	void `=instance_name`_Stop (void)
	void `=instance_name`_Init (void)
	void `=instance_name`_Enable (void)

	Low Power APIs
	void `=instance_name`_Sleep (void)
	void `=instance_name`_Wakeup (void)
	void `=instance_name`_SaveConfig(void)
	void `=instance_name`_RestoreConfig(void)

	PSoC Creator Generated Defines
	Project Type
	Chip Configuration Mode
	All
	PSoC 3
	PSoC 3 and PSoC 5LP
	PSoC 5LP

	Debugging Mode
	Chip Protection Mode
	Stack and Heap
	Voltage Settings
	System Clock Frequency
	PSoC 3 and PSoC 5

	JTAG/Silicon ID
	IP Block Information

	3 Clocking
	PSoC Creator Clocking Implementation
	Overview
	Clock Connectivity
	System Clock
	Global Clock
	Routed Clock

	Clock Synchronization
	Synchronous Clock (PSoC 3/ PSoC 5LP)
	Asynchronous Clock (PSoC 3/ PSoC 5LP)
	Making Signals Synchronous (PSoC 3/ PSoC 5LP)

	Routed Clock Implementation
	Example with a Divided Clock
	Example with a Clock from a Pin
	Example with Multiple Clock Sources
	Overriding Routed Clock Transformations

	Using Asynchronous Clocks
	Clock Crossing
	Gated Clocks
	Fixed-Function Clocking
	UDB-Based Clocking
	Changing Clocks in Run-time
	Impact on Components Operation
	CyDelay APIs
	Cache Configuration

	Low Voltage Analog Boost Clocks
	APIs
	void SetAnalogRoutingPumps(uint8 enabled)
	uint8 CyPLL_OUT_Start(uint8 wait)
	void CyPLL_OUT_Stop()
	void CyPLL_OUT_SetPQ(uint8 pDiv, uint8 qDiv, uint8 current)
	void CyPLL_OUT_SetSource(uint8 source)
	void CyIMO_Start(uint8 wait)
	void CyIMO_Stop()
	void CyIMO_SetFreq(uint8 freq)
	void CyIMO_SetSource(uint8 source)
	void CyIMO_EnableDoubler()
	void CyIMO_DisableDoubler()
	void CyBusClk_SetDivider(uint16 divider)
	void CyCpuClk_SetDivider(uint8 divider)
	void CyMasterClk_SetSource(uint8 source)
	void CyMasterClk_SetDivider(uint8 divider)
	void CyUsbClk_SetSource(uint8 source)
	void CyILO_Start1K()
	void CyILO_Stop1K()
	void CyILO_Start100K()
	void CyILO_Stop100K()
	void CyILO_Enable33K()
	void CyILO_Disable33K()
	void CyILO_SetSource(uint8 source)
	uint8 CyILO_SetPowerMode(uint8 mode)
	uint8 CyXTAL_Start(uint8 wait)
	void CyXTAL_Stop()
	void CyXTAL_EnableErrStatus()
	void CyXTAL_DisableErrStatus()
	uint8 CyXTAL_ReadStatus()
	void CyXTAL_EnableFaultRecovery()
	void CyXTAL_DisableFaultRecovery()
	void CyXTAL_SetStartup(uint8 setting)
	void CyXTAL_SetFbVoltage(uint8 setting)
	void CyXTAL_SetWdVoltage(uint8 setting)
	void CyXTAL_32KHZ_Start()
	void CyXTAL_32KHZ_Stop()
	uint8 CyXTAL_32KHZ_ReadStatus()
	uint8 CyXTAL_32KHZ_SetPowerMode(uint8 mode)
	void CySetScPumps(uint8 enable)

	4 Power Management
	Implementation
	Low Power Usage
	Clock Configuration
	Wakeup Time Configuration
	Wakeup Source Configuration
	PSoC 3 Alternate Active Mode Specific Issues
	PSoC 5LP Specific Issues

	Power Management APIs
	void CyPmSaveClocks()
	void CyPmRestoreClocks()
	void CyPmAltAct(uint16 wakeupTime, uint16 wakeupSource)
	CyPmAltAct (Continued)
	void CyPmSleep(uint8 wakeupTime, uint16 wakeupSource)
	CyPmSleep (Continued)
	void CyPmHibernate()
	void CyPmHibernateEx(uint16 wakeupSource)
	uint8 CyPmReadStatus(uint8 mask)

	5 Interrupts
	APIs
	CyGlobalIntEnable
	CyGlobalIntDisable
	uint32 CyDisableInts()
	void CyEnableInts(uint32 mask)
	void CyIntEnable(uint8 number)
	void CyIntDisable(uint8 number)
	uint8 CyIntGetState(uint8 number)
	cyisraddress CyIntSetVector(uint8 number, cyisraddress address)
	cyisraddress CyIntGetVector(uint8 number)
	cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address)
	cyisraddress CyIntGetSysVector(uint8 number)
	void CyIntSetPriority(uint8 number, uint8 priority)
	uint8 CyIntGetPriority(uint8 number)
	void CyIntSetPending(uint8 number)
	void CyIntClearPending(uint8 number)

	6 Pins
	APIs
	uint8 CyPins_ReadPin(uint16/uint32 pinPC)
	void CyPins_SetPin(uint16/uint32 pinPC)
	void CyPins_ClearPin(uint16/uint32 pinPC)
	void CyPins_SetPinDriveMode(uint16/uint32 pinPC, uint8 mode)
	uint8 CyPins_ReadPinDriveMode(uint16/uint32 pinPC)
	void CyPins_FastSlew(uint16/uint32 pinPC)
	void CyPins_SlowSlew(uint16/uint32 pinPC)

	7 Register Access
	APIs
	uint8 CY_GET_REG8(uint16/uint32 reg)
	void CY_SET_REG8(uint16/uint32 reg, uint8 value)
	uint16 CY_GET_REG16(uint16/uint32 reg)
	void CY_SET_REG16(uint16/uint32 reg, uint16 value)
	uint32 CY_GET_REG24(uint16/uint32 reg)
	void CY_SET_REG24(uint16/uint32 reg, uint32 value)
	uint32 CY_GET_REG32(uint16/uint32 reg)
	void CY_SET_REG32(uint16/uint32 reg, uint32 value)
	uint8 CY_GET_XTND_REG8(uint32 reg)
	void CY_SET_XTND_REG8(uint32 reg, uint8 value)
	uint16 CY_GET_XTND_REG16(uint32 reg)
	void CY_SET_XTND_REG16(uint32 reg, uint16 value)
	uint32 CY_GET_XTND_REG24(uint32 reg)
	void CY_SET_XTND_REG24(uint32 reg, uint32 value)
	uint32 CY_GET_XTND_REG32(uint32 reg)
	void CY_SET_XTND_REG32(uint32 reg, uint32 value)

	8 DMA
	9 Flash and EEPROM
	Implementation
	Flash Architecture
	EEPROM Architecture
	Working with Flash and EEPROM
	Power Modes

	Flash and EEPROM APIs
	cystatus CySetTemp()
	cystatus CyWriteRowFull(uint8 arrayId, uint16 rowAddress, uint8 *rowData, uint16 rowSize)
	cystatus CyWriteRowData(uint8 arrayId, uint16 rowAddress, uint8 *rowData)
	cystatus CyWriteRowConfig(uint8 arrayId, uint16 rowAddress, uint8 *rowECC)
	void CyFlash_Start()
	void CyFlash_Stop()
	cystatus CyFlash_EraseRow(uint8 arrayId, uint16 rowAddress)
	void CyFlash_SetWaitCycles(uint8 freq)
	void CyEEPROM_Start()
	void CyEEPROM_Stop()
	void CyEEPROM_ReadReserve()
	void CyEEPROM_ReadRelease()

	10 System Functions
	General APIs
	uint8 CyEnterCriticalSection(void)
	void CyExitCriticalSection(uint8 savedIntrStatus)
	void CYASSERT(uint32 expr)
	void CyHalt(uint8 reason)
	void CySoftwareReset(void)
	void CyGetUniqueId(uint32* uniqueId)

	CyDelay APIs
	void CyDelay(uint32 milliseconds)
	void CyDelayUs(uint16 microseconds)
	void CyDelayFreq(uint32 freq)
	void CyDelayCycles(uint32 cycles)

	Voltage Detect APIs
	Functional Description
	Device Reset
	Low/High-Voltage Detection
	Interrupt Configuration
	Best Practices
	APIs
	void CyVdLvDigitEnable(uint8 reset, uint8 threshold)
	void CyVdLvAnalogEnable(uint8 reset, uint8 threshold)
	void CyVdLvDigitDisable(void)
	void CyVdLvAnalogDisable(void)
	void CyVdHvAnalogEnable(void)
	void CyVdHvAnalogDisable(void)
	uint8 CyVdStickyStatus(uint8 mask)
	uint8 CyVdRealTimeStatus(void)

	Cache Functionality
	PSoC 3
	PSoC 5LP
	void CyFlushCache()

	Macro Callbacks

	11 Startup and Linking
	PSoC 3
	PSoC 5LP
	Unaligned Transfers (PSoC 5LP)
	GCC Implementation
	Realview Implementation (applicable for MDK
	CMSIS Support
	Manual addition of the CMSIS Core files

	High-Level I/O Functions
	The printf() Usage Model

	Preservation of Reset Status
	PSoC 3/PSoC 5LP
	uint8 CyResetStatus

	API Memory Usage
	PSoC 3 (Keil PK51)
	PSoC 5LP (GCC)

	Performance
	Functions Execution Time
	PSoC 3
	PSoC 5LP

	Critical Sections Duration
	PSoC 3
	PSoC 5LP

	12 Watchdog Timer (WDT)
	APIs
	void CyWdtStart(uint8 ticks, uint8 lpMode)
	void CyWdtStart(uint8 ticks, uint8 lpMode) (continued)
	void CyWdtClear()

	13 MISRA Compliance
	Verification Environment
	Project Deviations
	Documentation Related Rules
	PSoC Creator Generated Sources Deviations
	cy_boot Component-Specific Deviations []

	14 System Timer (SysTick)
	Functional Description
	APIs
	Functions
	void CySysTickStart(void)
	void CySysTickInit(void)
	void CySysTickEnable(void)
	void CySysTickStop(void)
	void CySysTickEnableInterrupt(void)
	void CySysTickDisableInterrupt(void)
	void CySysTickSetReload(uint32 value)
	uint32 CySysTickGetReload(void)
	uint32 CySysTickGetValue(void)
	void CySysTickSetClockSource(uint32 clockSource)
	uint32 CySysTickGetClockSource(uint32 clockSource)
	uint32 CySysTickGetCountFlag(void)
	void CySysTickClear(void)
	(void *) CySysTickSetCallback(uint32 number, void(*CallbackFunction)(void))
	(void *) CySysTickGetCallback(uint32 number)

	Global Variables

	15 cy_boot Component Changes
	Version 5.90
	Version 5.80
	Version 5.70
	Version 5.60
	Version 5.50
	Version 5.40
	Version 5.30
	Version 5.20
	Version 5.10
	Version 5.0
	Version 4.20
	Version 4.11
	Version 4.10
	Version 4.0
	Version 3.40 and Older
	Version 3.40
	Version 3.30
	Version 3.20
	Version 3.10
	Version 3.0

	Version 2.40 and Older
	Version 2.40
	Version 2.30
	Version 2.21

