
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

PSoC® Creator™

User Guide

Document Number: 001-93417 Rev *N

Cypress Semiconductor
An Infineon Technologies Company

198 Champion Court
San Jose, CA 95134-1709

www.cypress.com
www.infineon.com

http://www.cypress.com/
http://www.infineon.com/

Copyrights

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 2

© Cypress Semiconductor Corporation, 2014-2022. This document is the property of Cypress Semiconductor Corporation and
its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or
referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as
specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license
(without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and
(b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and
distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use
with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is
prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without
further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical components in systems designed or intended for the operation of
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where
the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical
component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure
of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and
hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress
products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,
including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, ModusToolbox, WICED, PSoC,
CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other
countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as
property of their respective owners.

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 3

Contents

1 Welcome to PSoC Creator .. 7

Revision History ... 7

2 Getting Started ... 9

Design Tutorials ... 9

Beginner ... 10

Intermediate ... 21

Advanced ... 32

How To ... 49

3 Understanding PSoC Creator ... 51

Concepts .. 51

General Tasks .. 53

PSoC Creator Framework.. 75

Framework Interface Components .. 89

Dialogs ... 111

4 Using Design Entry Tools ... 160

Schematic Editor .. 161

Code Editor .. 185

Find Replace .. 194

Go To Line .. 209

Design-Wide Resources .. 210

Pin Editor.. 212

Analog Device Editor ... 216

Clock Editor .. 229

MFT Editor (Certain FM Devices Only) .. 242

Interrupt Editor ... 243

DMA Editor ... 245

DMA Wizard ... 247

System Editor ... 253

Directives Editor ... 258

Flash Security Editor .. 260

EEPROM Editor ... 263

Symbol Editor ... 265

UDB Editor ... 282

Contents

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 4

Other Tools ... 296

Common Design Entry Toolbars .. 300

Design Elements Palette.. 302

Working with Text ... 303

Working with Lines ... 307

Working with Shapes ... 308

Zooming ... 309

Scrolling ... 310

Design Entry Reserved Words... 311

5 Building a PSoC Creator Project .. 314

Build Toolbar Commands ... 315

Build Menu ... 316

Build Settings ... 317

Debug Build Settings ... 321

Customizer Build Settings .. 323

Peripheral Driver Library Build Settings ... 324

Target IDEs Build Settings ... 325

Toolchain Build Settings ... 327

Assembler Build Settings ... 328

Compiler Build Settings .. 330

Linker Build Settings .. 334

User Commands Build Settings ... 336

Library Generation Build Settings .. 337

Mapper, Placer, Router .. 337

Migrating from Older PSoC Creator Versions .. 338

Control File ... 338

Attribute, CSAttribute, and FixedAttribute .. 339

Control File Format .. 340

Control File Pattern Matching .. 342

PSoC UDBs in PSoC Creator .. 343

Directives ... 344

Generated Files (PSoC 3, PSoC 4, PSoC 5LP) .. 348

Generated Files (PSoC 6).. 351

Generated Files (FM0+) ... 356

Source Code Control ... 357

Static Timing Analysis .. 360

CyPrjMgr Command Line Tool ... 369

CyHexTool Command Line Tool... 379

CyElfTool Command Line Tool ... 381

Keil Compiler .. 382

Reentrant Code in PSoC 3 .. 383

6 Integrating into 3rd Party IDEs ... 386

PSoC 6 Designs ... 387

 Contents

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 5

PSoC 4 and PSoC 5LP Designs .. 434

Using PSoC 4/PSoC 5LP Designs with 3rd Party IDEs .. 452

PSoC 3 Designs ... 490

FM0+ Designs .. 502

Keil µVision IDE Notes ... 507

PSoC Creator Toolchain Settings .. 511

Registering MiniProg3/KitProg Drivers .. 513

Flash Programming/Debugging using MiniProg3 .. 514

Miscellaneous Export Notes .. 516

3rd Party Bootloader Support .. 519

7 Programming and Debugging .. 529

MiniProg3 ... 530

Select Debug Target .. 531

Device Configuration .. 534

Using the Debugger ... 535

Debugger Toolbar Commands ... 536

Debugger Menu Commands .. 537

Debugger Indicators ... 541

Debugger Status Messages .. 542

Debugger Windows .. 542

Attach to Target .. 564

Error Handling .. 565

8 Completing the Project .. 567

Review Device Datasheet .. 567

Optimize Compiler Settings ... 568

Download and Archive Development Tools ... 568

Archive the Project ... 568

Set Build Configuration .. 569

Select Programming Protocol .. 570

Enable Device Protection... 570

Select Optional Reset Line .. 571

Select Flash Security Protection .. 572

Enable Write Once Latch Flash Protection .. 572

Evaluate General Programming Options ... 573

9 Reference Material ... 574

Component Author Guide .. 574

Tuner API Reference Guide ... 575

Third Party References .. 575

Contents

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 6

10 Contact Us .. 576

11 Register PSoC Creator .. 577

12 Index .. 579

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 7

1 Welcome to PSoC Creator

PSoC Creator helps you configure and program analog- and digital-peripheral functionality into a Cypress PSoC
device. Using PSoC Creator, you can select and place Components, write C and/or Assembly source, and debug
and program the project/part. When used with associated hardware, this dynamic hardware-software combination
allows you to test the project in a hardware environment while viewing and debugging device activity in a software
environment.

Note This document refers to PSoC 4 devices throughout (in addition to other devices). References to PSoC 4
should be interpreted to include PSoC 4, PSoC Analog Coprocessor, PRoC® BLE (Bluetooth Low Energy), and
CCGx.

This PSoC Creator help contains the following sections:

Getting Started Tutorials to get you started using PSoC Creator.

Understanding PSoC Creator Information and tasks to better understand PSoC Creator.

Using Design Entry Tools Tasks and interface descriptions for the graphical design entry tools.

Building a PSoC Creator Project Topics for configuring and building PSoC Creator projects.

Integrating into 3rd Party IDEs

Information and tasks for generating PSoC Creator design files for use with a 3rd
Party IDE

Programming and Debugging a
PSoC Creator Project

Topics for programming the device and using the debugger.

Completing the Project Topics for finalizing a PSoC Creator design.

Reference Material 3rd party tool chain docs and other reference material.

Revision History
Document Title: PSoC® Creator™ User Guide

Document Number: 001-93417

Revision Date Description of Change

** 7/17/14 New document.

*A 7/25/14 Updates to include references to PSoC 4 BLE and PRoC BLE.

*B 12/12/14 Updated screen captures and Design-Wide Resources section.

*C 5/14/15 Updates for PSoC Creator 3.2 and PSoC 4100M and PSoC 4200M.

*D 9/10/15 Updates for PSoC Creator 3.3 and PSoC 4200L.

*E 12/30/15 Updates for PSoC 3.3 Service Pack 1.

*F 9/9/16 Updates for PSoC Creator 4.0.

*G 4/13/17 Updates for PSoC Creator 4.1.

Welcome to PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 8

Document Title: PSoC® Creator™ User Guide

Document Number: 001-93417

Revision Date Description of Change

*H 8/25/17 Updates for PSoC Creator 4.2 Beta release.

*I 12/18/17 Updates for PSoC Creator 4.2 Beta 2 release.

*J 2/14/18 Updates for PSoC Creator 4.2 Production release.

*K 2/26/18 Minor doc edit.

*L 2/4/20 Updates for PSoC Creator 4.3 Production release.

*M 10/19/20 Updates for PSoC Creator 4.4 Production release.

*N 08/23/22 Updated to PSoC™ Automotive Multitouch guidelines

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 9

2 Getting Started

This section contains tutorials to help get you started using PSoC Creator. There are two sets of tutorials:

◼ Design Tutorials - Walkthroughs to get you creating designs quickly.

◼ How To - Miscellaneous tutorials to help increase your efficiency using PSoC Creator.

Design Tutorials

This section contains the following design tutorials to help you get started creating designs with PSoC Creator.
Code examples for these tutorials are contained in the Find Code Example dialog, available from the Start page.
These tutorials are intended to provide quick introductions to begin using PSoC Creator. For more information, refer
to the following

◼ PSoC 3: AN54181: www.cypress.com/go/PSoC3GettingStarted

◼ PSoC 4: AN79953: www.cypress.com/go/PSoC4GettingStarted

◼ PSoC 4 BLE: AN91267: www.cypress.com/go/AN91267

◼ PSoC 5LP: AN77759: www.cypress.com/go/PSoC5GettingStarted

◼ PRoC BLE: AN94020: www.cypress.com/go/AN94020

◼ PSoC Creator Training: www.cypress.com/go/creatorstart/creatortraining

You may also obtain various kits to use with PSoC Creator and associated devices. When installed, these kits
provide additional documentation and tutorials, available on the PSoC Creator Start Page.

Beginner:

◼ My First Design "Hello World Blinky"

◼ Starter Projects

Intermediate:

◼ Basic Design

◼ Debugging a Design

http://www.cypress.com/go/PSoC3GettingStarted
http://www.cypress.com/go/PSoC4GettingStarted
http://www.cypress.com/go/AN91267
http://www.cypress.com/go/PSoC5GettingStarted
http://www.cypress.com/go/AN94020
http://www.cypress.com/go/creatorstart/creatortraining

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 10

Advanced:

◼ Library Component Project

◼ Basic Hierarchical Design

See Also:

◼ Find Code Example

◼ How To

Beginner

My First Design "Hello World Blinky"

This tutorial provides an introduction to PSoC Creator and the process of developing a design. The design process
includes:

◼ Create a New Project

◼ Add/Configure Components

◼ Write C Code

◼ Program the Device

This is the first of a few design tutorials included in this PSoC Creator Help file. This design will show you how to
blink an LED. Then you will add another Component to display "Hello World" on an LCD.

Note If you prefer not to create a new empty project, you can open a completed code example for this tutorial,
named "HelloWorld_Blinky," using the Find Code Example dialog. A link to the dialog is located on the PSoC
Creator Start page. There are also several Starter Designs you can create from the New Project dialog.

Create a New Project:

The first step of creating a design is to create the basic design project.

1. From the File menu, select New > Project or click to open the New Project wizard.

2. For Target device, select the default PSoC 3 device, or select the specific device you want to use. For this
project, we are using the default PSoC 3 device CY8C3866AXI-040. If you select a different device, then you
will need to adjust your pin settings accordingly.

3. On the "Select project template" page, select Empty schematic.

4. In Name, type the name of your project, for example: "MyHelloWorld."

Note The project name cannot exceed 80 characters.

5. In Location, type the path where you want the project to be saved, or click [...] and navigate to the appropriate
directory.

6. Click Finish.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 11

By default, PSoC Creator creates a new workspace containing the new project. Files and folders are added to the
Workspace Explorer shown in the Source tab.

The Schematic Editor displays the top-level schematic file (TopDesign.cysch) as a document window, and the
Component Catalog opens to display a list of Components to use in your design.

Note If you created this project in the same workspace as another project, make this the active project by selecting
Set as Active Project from the Project menu.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 12

Add/Configure Components:

After the new project has been created, add Components to the schematic canvas and configure them as
appropriate.

1. In the Component Catalog, expand the "Digital > Functions" folder and drag a PWM Component onto your
design.

The Notice List window indicates that there are connection errors.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 13

2. Double-click the PWM Component to open the Configure dialog, change the Implementation setting to "Fixed
Function," and click OK.

Notice the Component instance's appearance changes: kill input added, one pwm output available, and the
label is updated.

3. In the Component Catalog, expand the "Digital > Logic" folder, drag a Logic Low Component onto your design,
and connect it to the kill terminal on the PWM. Connect another Logic Low to the reset terminal.

4. In the Component Catalog, expand the "System" folder, drag a Clock Component onto your design, and
connect it to the clock terminal on the PWM.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 14

The Notice List window clears.

5. Double-click the Clock to open the Configure dialog, change the Desired Frequency value to 0.25 kHz, and
click OK.

6. In the Component Catalog, expand the "Ports and Pins" folder, drag a Digital Output Pin Component onto your
design, and connect it to the pwm terminal on the PWM.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 15

Your design should now look like the following image.

Assign Pin:

PSoC Creator will automatically assign the pin to a physical port/pin on the device. To specify a specific pin, use the
Pin Editor.

1. In the Workspace Explorer, double-click the HelloWorld.cydwr file to open the Design-Wide Resources Pin
Editor.

2. Pull down the menu in the Port or Pin column and assign Pin_1 to the following pin, depending on the kit you
have:

□ For the PSoC 3 FirstTouch Starter Kit (CY8CKIT-003), use P4[1] (or pin 70).

□ For the PSoC Development Kit (CY8CKIT-001), use P0[0] (or pin 71).

Write C Code:

1. In the Workspace Explorer, double-click the main.c file to open it.

2. Add the following function to main():

PWM_1_Start();

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 16

Program the Device:

1. Connect the MiniProg3 to your kit and plug it into your PC with a USB cable.

2. If you are using the PSoC Development Kit (CY8CKIT-001), use a wire to connect the P0[0] pin to one of the
four LEDs. Refer to the appropriate documentation for the kit for more information.

3. Click Program .

4. If the Select Debug Target dialog displays, select your device, then click Connect and OK.

PSoC Creator will build your design, generate code, and program the device. When programming is complete, the
selected LED on the board will blink; press the Reset button if needed.

Expand the Design:

If you are using the PSoC Development Kit (CY8CKIT-001), you can expand the design to display "Hello World" on
the LCD.

1. On the Component Catalog, expand the "Display" folder and drag a Character LCD onto your schematic.

2. Open the Pin Editor, and assign LCD_Char_1:LCDPort to P2[6:0].

3. Open the main.c file, and edit it to add the following to main():

LCD_Char_1_Start();

LCD_Char_1_PrintString("Hello World");

4. Click Program .

PSoC Creator will build your design, generate code, and program the device. When programming is complete, the
LCD will display the words "Hello World."

From this point, you can modify the design to do different things as desired.

See Also:

◼ Code Examples

◼ Find Code Example

◼ Workspace Explorer

◼ Schematic Editor

◼ Component Catalog

◼ Pin Editor

Code Examples

PSoC Creator provides several Code Example projects. These projects highlight features that are unique to PSoC
devices. They allow you to create a design with various Components and code already provided, instead of
creating a new empty design.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 17

To Use Code Example Projects:

1. From the File menu, select New > Project or click to open the New Project wizard.

2. Select the appropriate Design project option and click Next >.

3. On the "Select project template" page, select the Code example option and click Next >.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 18

4. On the "Select a code example" page, select a project from the list. This page is very similar to the Find Code
Example dialog. If needed, use the Filter by field to narrow the number of examples listed.

Note If an example shows an icon next to the name, it means you need to install or update the example from
the web. Click on the icon to do that.

Click Next >.

5. On the "Create Project" page, select the appropriate options.

6. Click Finish.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 19

The selected project is created and files are displayed in the Workspace Explorer. The project is ready to build and
program the device. For more information, refer to the documentation included with the design. If the
documentation is not available, select the Include Starter Design documentation... option in the Options Dialog,
and re-create the project.

See Also:

◼ Creating a New Project

◼ Workspace Explorer

◼ My First Design "Hello World Blinky"

◼ Options Dialog

My Templates

My Template projects are similar to code examples and pre-populated schematic projects in that these projects
contain various levels of information already, including device configuration, Components, Design-Wide Resources,
etc. The main difference with My Template projects is that they are created and copied to a specific directory by you
for later use when creating a new project.

To Specify the My Templates Location:

The default location for storing My Templates projects is <user>\Documents\PSoC Creator\My Templates.

To change this, open the Options dialog. Under Project Management, use the Browse... button to navigate to the
desired location.

To Copy a Project to My Templates:

In the Workspace Explorer, under the Source tab, right-click on a design project and select Copy to My Templates
(<project_name>). You can also use the Project menu to select the same option.

Note When copying a project to the My Templates location, any relative project dependencies will need to be
updated when a new project is created from it. Any referenced files outside of the project's cydsn directory will not
be included in the new My Template project.

To Create a Project from My Templates:

Note When creating a project from My Templates, if the created project is of a different device family than the My
Templates project, then the Design-Wide Resource files will no longer an applicable and a new <project>.cydwr file
will be generated.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 20

After copying one or more projects to the My Templates location, follow the usual instructions to create a new
project, except, as follows:

1. On the Select project template step, select the My Template project option and click Next >.

2. Then on the Select a My Template project step, select the desired project from the list, and click Next >.

3. On the final step, specify the name and location of the project/workspace as usual.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 21

Intermediate

Basic Design

This tutorial provides more details about configuring Components and working with Design-Wide Resources
(DWR). It is intended to be a design focusing on a set of basic Components to show various ways of configuring
them. This tutorial does not cover every step in the design process in great detail. Instead, it describes concepts
relevant to parts of the design. You can then use the same principles in any design. For introductory instructions for
creating a design, refer to the "Hello World Blinky" tutorial.

Note If you prefer not to create a new project, you can open the completed code example for this tutorial, named
"BasicDesign," using the Find Code Example dialog. A link to the dialog is located on the PSoC Creator Start page.

Create a New Project:

As shown in the "Hello World" tutorial, the first step for a design is to create a new project. As needed, follow the
instructions in that tutorial. You can also refer to Creating a New Project.

Select and Configure Digital Components:

For this tutorial, the main digital Component will be the Timer. Then, you will add support Components to your
design, configure them, and connect them to the Timer.

1. Expand the Digital > Functions folder in the Component Catalog, click on the Timer Component, and drag it
onto your design canvas.

Notice that the Timer is already connected to a Clock Component and a Logic Low Component. This is
because the Timer is an example of a Schematic Macro.

2. Remove the Clock and the Logic Low Components because this example will use different Components.

3. Double-click the Timer Component to open the Configure dialog.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 22

By default, the Timer is configured as 8-bit, Fixed Function, and Software Only enable. For more information
about the Timer Component, refer to its datasheet.

Change the following parameters:

□ Implementation to UDB

□ Enable Mode to "Software and Hardware"

□ select the Interrupt on TC check box

4. Click OK.

Notice that the "enable" terminal displays on the Timer.

5. From the Component Catalog, add the following Components to your design:

□ Control Register (from the Digital > Registers folder) -- Used to enable the Timer under software
control, as well as provide a reset signal for the Timer.

□ Digital Output Pin (from the Ports and Pins folder) -- Used to provide a divided clock for another
Component in the design. The divided clock is 3.1 KHz.

□ Clock (from the System folder) -- Used to provide the input clock. In this case at 800 KHz.

□ Interrupt (from the System folder) -- Used to act as a heartbeat for the design. The heartbeat can be
used for timing of software functions.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 23

6. Configure the following Component instances as follows:

Instance Parameter(s)

Control_Reg_1 NumOutputs: 2

Clock_1 Desired Frequency: 800 Khz

7. Arrange the Components on your design, and use the Wire tool (from the Design Elements Palette, to
connect them, similar to the following. See Working with Wires for more information.

When complete, all DRC warnings and errors should be cleared.

Select and Configure Analog Components:

The next part of the design will contain a Delta Sigma ADC as the main analog Component, along with support
Components.

1. From the Component Catalog, drag a Delta Sigma ADC Component (from the Analog > ADC folder) onto your
design.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 24

2. Double-click the Component to open the Configure dialog.

By default, the Delta Sigma ADC is configured as 16-bit, with an input range of +/- 1.024 V. For more
information about the Delta Sigma ADC Component, refer to its datasheet.

3. Change parameters as follows:

□ Under the Common tab, set Input Mode to "Single ended."

□ Under the Config1 tab, change the Resolution parameter to "12" and Input Range parameter to
"Vssa to Vdda".

□ Click OK.

Notice that the label below the Component reads 12 Bit Resolution.

4. From the Component Catalog, add the following Components to your design:

□ Analog Pin (from the Ports and Pins folder) -- Used to connect the input signal to the ADC.

□ Interrupt (from the System folder) -- Used to trigger reading the result of a conversion from the ADC.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 25

5. Arrange the Components on your design, and use the Wire tool (from the Design Elements Palette, to
connect them, similar to the following:

Notes

□ First, notice that the wire from the Analog Pin to the ADC is red by default, and the wire from the ADC
to the Interrupt is green by default. PSoC Creator uses these colors to indicate analog and digital
signals. These colors can be changed using the Options dialog.

□ Second, note that a wire is not needed to connect the Components. You can connect them directly by
their terminals . This tutorial uses wires to show the different signal colors.

When complete, all DRC warnings and errors should be cleared.

Edit Source Code:

1. Build the project to generate source files for the Components.

When complete, the Workspace Explorer expands the Generated_Source folder to show all the c files and
header files for the various Components in your design.

2. Open the header files to view (and copy) the function prototypes you will enter in the main.c file.

3. Copy and paste the following code and replace any code in your main.c file.

Note The comments in the following code are for your information.

/***

* File: main.c

*

* Version: 2.0

*

* Description:

* This is a basic design source code.

*

**/

#define ADC_NUMBER_SAMPLES (15)

/* Initialize array elements to zero. */

uint16 ADC_Samples[15] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

/* Defining and initializing the index */

int8 ADC_Sample_Index = 0;

/* Initiialize the average result */

uint32 ADC_Sample_Average = 0;

/* Sample read from ADC */

int16 ADC_Current_Sample = 0;

/* Indicator for when sample is available */

int8 ADC_Sample_Available = 0;

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 26

/***

* Function Name: InterruptHandler

**

* Summary:

* The Interrupt Service Routine for isr_1.

*

* Parameters:

* None.

*

* Return:

* void.

*

***/

CY_ISR(InterruptHandler)

{

 Timer_1_ReadStatusRegister(); /* Read the Status Register */

}

/***

* Function Name: main

**

* Summary:

* Main function performs following functions:

* 1: Start the clock

* 2: Start the Timer

* 3: Start the interrupts

* 4: Start ADC DelSig and its interrupts

* 5: Testing for sample available from ADC

* 6: Storing the sample into the array

* 7: Comparing the samples

*

* Parameters:

* None.

*

* Return:

* None.

*

***/

void main()

{

 int8 i;

 CyGlobalIntEnable;

 /* Start the Interrupt */

 isr_1_Start();

 isr_1_Disable();

 isr_1_SetVector(InterruptHandler);

 isr_1_Enable();

 /* Enable the Timer; reset disabled */

 Control_Reg_1_Write(0x01);

 /* Start the LCD */

 LCD_Start();

 /* Start the Timer */

 Timer_1_Start();

 /* Start the ADC */

 ADC_DelSig_1_Start();

 /* Start the ADC conversion */

 ADC_DelSig_1_StartConvert();

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 27

 LCD_Position(0, 0);

 LCD_PrintString("ADC OUTPUT:");

 for(;;)

 {

 /* Check whether ADC conversion complete or not */

 if (ADC_DelSig_1_IsEndConversion(ADC_DelSig_1_WAIT_FOR_RESULT))

 {

 /* Get the result */

 ADC_Current_Sample = ADC_DelSig_1_GetResult16();

 ADC_Sample_Available = 1;

 /* Print the ADC result on LCD */

 LCD_Position(0, 11);

 LCD_PrintInt16(ADC_Current_Sample);

 }

 /* Testing for sample available from the ADC */

 if (ADC_Sample_Available)

 {

 ADC_Sample_Available = 0;

 /* storing the sample into the array, based on the index */

 ADC_Samples[ADC_Sample_Index++] = ADC_Current_Sample;

 /* comparison */

 if (ADC_Sample_Index == ADC_NUMBER_SAMPLES)

 {

 ADC_Sample_Average = 0;

 for (i = 0; i < ADC_NUMBER_SAMPLES; i++) ADC_Sample_Average +=

ADC_Samples[i];

 ADC_Sample_Average /= ADC_NUMBER_SAMPLES;

 ADC_Sample_Index = 0;

 }

 }

 }

}

/* [] END OF FILE */

Build the Project:

Click Build . PSoC Creator will build the project and display messages accordingly. Address any errors or
warnings as needed.

If you have a PSoC development kit with an LCD, you can click Program to program the device and observe
the output on the LCD.

Next Steps:

This tutorial contains the basic process of configuring Components in a design. To continue this design you will
need to obtain hardware to program the device, as well as to use the debugger features. In the mean time, you can
refer to the following related topics:

◼ Debugging a Design

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 28

Debugging a Design

This tutorial will use the design created with the Basic Design tutorial and go through several debugging concepts,
such as setting a breakpoint, adding a watch, and stepping. This design will show the values of an array at different
points while executing the code. It will also show the total and average of the specified variable.

Open Example Design:

If you created a design with the Basic Design tutorial, you can use that one. Refer to Opening an Existing Project
for instructions to open the design, as needed.

You can also open the completed code example for this tutorial, named "BasicDesign," using the Find Code
Example dialog. A link to the dialog is located on the PSoC Creator Start page.

Set Breakpoints and Step:

In this section, you will set a couple breakpoints and run the debugger to verify that the code is being executed as
desired. You will also use the Step function to show where in the stack you are currently viewing. For more
information about breakpoints, see Breakpoints Window. For more information about stepping, see Debugger
Toolbar Commands.

1. In the Workspace Explorer, double-click the main.c file to open it.

2. Scroll to the for loop section and click in the margin of line 105 to insert a breakpoint at the line of code.

A breakpoint indicator appears in the margin next to the desired line of code.

3. Click Debug to start the debugger.

Depending on the Debugger Option settings, the Debugger will run to Main.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 29

4. Open the Call Stack window from the Debug > Windows menu. Notice the current line indicator is in main().

5. Click Continue .

The Debugger will run to the breakpoint you set. Notice the current line indicator over the breakpoint icon, as
well as in the Call Stack window.

6. Click Step Into .

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 30

The debugger opens the ADC_DelSig_1_INT.c file and stops at line 73. Again notice the current line indicator in
the Call Stack window.

7. Stop the debugger by clicking .

Now that you have confirmed the debugger stopped at the desired breakpoint, you can disable the breakpoint by
right-clicking on the icon in the margin and selecting Disable.

Set Hit Count and Variable Watchpoint:

In this section, you will set a hit count breakpoint as well as a variable watchpoint to monitor the values of an array.

1. Open the main.c file and scroll to line 50.

2. Click in the margin to set a breakpoint and then right-click on the breakpoint icon and select Hit Count...

The Breakpoint Hit Count window opens.

3. Enter the hit counter number of "5" and click OK.

4. Click Debug to start the debugger.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 31

Depending on the Debugger Option settings, the Debugger will run to Main.

5. Right-click on the ADC_Samples array in line 51 and select Add Watch.

The Watch 1 window opens showing the ADC_Samples array. Expand the list to see all the array values.

6. Click Continue .

The debugger stops on line 50 and the Watch Window shows the ADC_Samples array with two values
assigned.

Note Breakpoints are hit twice when interrupts are enabled. This happens because the breakpoint gets hit, but
before the line of code is actually executed an interrupt takes over and gets processed. When the interrupt has
completed, the processor returns to the original line of code. This causes the breakpoint to be hit again.

7. Disable the breakpoint in line 50.

8. Add another watch to the ADC_Sample_Average in line 54 of the main.c file.

9. Right-click in line 56, and select Run to Cursor.

10. In the Watch Window, notice that all the values in the ADC_Samples array now have a value and that the
ADC_Sample_Average is the total of those values.

11. Right-click in line 57, and select Run to Cursor.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 32

12. In the Watch Window, notice that the ADC_Sample_Average is now the average.

For more information about the PSoC Creator Debugger, refer to various topics under the Using the Debugger
section of this Help.

Advanced

Library Component Project

By default, PSoC Creator provides a library of Components that are available for you to use in your designs. There
may be cases where you wish to create your own libraries. This tutorial covers the basic process for creating a
library by showing you how to create a 4-bit shifter. This is only an example intended to show you how to create
basic Components. For more detailed instructions about creating Components, refer to the Component Author
Guide.

Note If you prefer not to create a new project, you can open the completed code example for this tutorial, named
"LibraryComponent," using the Find Code Example dialog. A link to the dialog is located on the PSoC Creator Start
page. Once open, select the Components tab in the Workspace Explorer to view the Component files.

Create a New Project:

The first step is to create the basic library project:

1. If there is currently an open project or workspace, select Close Workspace from the File menu.

2. From the File menu, select New > Project or click to open the New Project wizard. Select the Library
option and click Next >.

3. In Name, type the name of your project, for example: "My1stLib."

4. In Location, type the path where you want the project to be saved, or click [...] and navigate to the appropriate
directory.

5. Click Finish.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 33

PSoC Creator creates your project and adds files and folders to the Workspace Explorer with the Source tab
displayed by default. For more information, see Workspace Explorer.

Add a Shifter Component:

The basic library item is a Component. In order to add a Component, you must first add a Symbol, since every
Component must have one and only one symbol:

1. Click on the Components tab of the Workspace Explorer.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 34

2. Right-click on the project in the Workspace Explorer and select Add Component Item...

The Add Component Item dialog displays.

3. Under Symbol, click the Symbol Wizard template file.

4. In Component name, type the name to be displayed for your Component, for example: "shifter."

Note The symbol will inherit the Component name, and the name cannot contain spaces.

5. Click Create New.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 35

The Symbol Creation Wizard displays.

6. Using the Terminal name and Type fields in the table, create two input terminals named Data_In and Clock,
respectively, and four digital output terminals named D0 through D3.

See Symbol Wizard for more information.

7. Click OK.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 36

Your project shows the Component and symbol added to your project. The new Component displays in the
Workspace Explorer tree, with a symbol file (.cysym) shown as the only Component item.

The Symbol Editor also opens the .cysym file and displays the created symbol.

Notice that the symbol has a text box above it with shifter_N. This is an instance text label that allows you to
name a Component when it is instantiated in a design. For more information, see Working with Text. You can
change the default instance name using the symbol document property Doc.DefaultInstanceName in the
Properties dialog.

Specify Placement in Component Catalog:

When complete, Components will display in the Component Catalog. If you wish, you can control how they are
displayed.

1. Right-click on the symbol canvas and select Properties to open the Properties dialog.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 37

2. Click in the Doc.CatalogPlacement field to show the ellipsis [...] button.

3. Click the ellipsis [...] button to open the Catalog Placement dialog.

4. Click in the right column of the first row next to , and enter:

Example/LogicCircuits/

5. Click OK to close the Catalog Placement dialog.

6. Click OK to close the Properties dialog.

7. Click Save to save your symbol file.

See Defining Catalog Placement for more information about this dialog.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 38

Add a Shifter Implementation:

In order for your symbol to display in the Component Catalog, you must have an implementation. For this tutorial,
we will add a schematic.

1. Right-click on the Component in the Workspace Explorer and select Add Component Item...

The Add Component Item dialog displays.

2. Under Implementation, click the Schematic icon.

3. Under Target, leave the selection on Generic Device.

Note The schematic will inherit the Component name, and it cannot be changed.

4. Click Create New.

Note The Select Sheet Template dialog may display for you to choose a canvas template. If so, click on the
desired template, and click OK.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 39

Your project shows the schematic added to your project. The Component displays in the Workspace Explorer
tree, with a schematic file (.cysch) shown in addition to the symbol file.

The Schematic Editor opens the .cysch file and displays an empty canvas, along with the Component Catalog.
For more information see Schematic Editor.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 40

Complete the Shifter Schematic:

Now that you have an empty canvas, you need to draw the schematic to implement your symbol.

1. In the Component Catalog, expand the Digital > Logic tree.

□ Click and drag a D Flip Flop onto your canvas.

□ Add a total of four D Flip Flop Components.

2. From the Design Elements Palette, select the Digital Input terminal , and click the canvas to place the
terminal.

The Terminal Name dialog opens. See also Working with Schematic Terminals.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 41

3. In Specify Name, type "Data_In" and then click OK.

4. Repeat the process to add one additional Digital Input and four Digital Output terminals; name the additional
terminals Clock, D0, D1, D2, and D3, respectively.

5. Click the Draw Wire tool .

6. Connect the terminals to the logic gates similar to the following image:

See also Working with Wires.

7. Click Save to save your schematic file.

When you have completed the process, the Component will be listed the Component Catalog under the tab
named Example.

Using the Library:

Once you have created a library with one or more Components, you can use those Components as library
elements in your design projects. Go to the Basic Hierarchical Design tutorial to see how to use your Library in a
design.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 42

Basic Hierarchical Design

PSoC Creator allows you to create Components and reuse them. That is the basic definition of a hierarchical
design; Components and designs become building blocks for additional Components and designs.

This tutorial will show you how to create an 8-bit shifter using the LogicCircuit Library you created in a previous
tutorial. This is only an example intended to show you how to use Components you created in a hierarchical
design. For more detailed instructions about creating Components, refer to the Component Author Guide.

Note If you prefer not to create a new project, you can open the completed code example for this tutorial, named
"Shifter" using the Find Code Example dialog. A link to the dialog is located on the PSoC Creator Start page.

Create a New Project:

The first step is to create the basic design project:

1. If there is currently an open workspace, select Close Workspace from the File menu.

2. From the File menu, select New > Project or click to open the New Project wizard.

3. For Target device, select the default PSoC 3 device, or select the specific device you want to use. For this
project, we are using the default PSoC 3 device CY8C3866AXI-040. If you select a different device, then you
will need to adjust your pin settings accordingly.

4. In Name, type the name of your project, for example: "Shifter."

5. In Location, type the path where you want the project to be saved, or click [...] and navigate to the appropriate
directory.

6. Click Finish.

PSoC Creator creates your project and adds files and folders to the Workspace Explorer shown in the Source tab.
The Schematic Editor displays the top-level schematic file as a document window, and the Component Catalog
opens to display a list of Components to use in your design.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 43

Add the Logic Circuit Library:

By default, all new designs come with a pre-defined library of Components for you to use. These Components are
shown in the Component Catalog.

To add the Logic Circuit library, you need to add the library project to your library search path.

1. From the Project menu, select Dependencies... to open the Dependencies dialog.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 44

2. Under User Dependencies, click New Entry to open a file browser dialog, navigate to find the
My1stLib.cyprj file containing the library, and click Open.

3. Notice that the library project is listed under User Dependencies > Project and click OK to close the
Dependencies dialog.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 45

The Component Catalog now has a new tab named Example containing the shifter Component.

Complete the Design:

Now that you have added the library Components, you can use them to create the carry-ripple adder design.

1. In the Component Catalog, click the Example tab, expand the "LocicCircuits" folder, then click and drag the
shifter Component onto your schematic canvas; add a second shifter Component.

Notice that as you place Components, the Notice List window displays a list of connection errors. This is part of
the dynamic rule checking (DRC) system. It's a cue that your design has errors, which you will resolve as you
complete the design. For more information about this window, see Notice List Window.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 46

Notice also that the Components are named "shifter_1" and "shifter_2."

2. In the Component Catalog, click the Cypress tab, expand the "Ports and Pins" folder and drag a Digital Input
Pin onto your schematic canvas; also add eight Digital Output Pins.

3. Double-click the Digital Input Pin to open the Configure dialog, and change the Name to Data_In.

4. Click OK to close the dialog.

5. Rename the Digital Output Pins to D0 through D7.

6. In the Component Catalog, expand the "System" folder and drag a Clock onto your schematic canvas.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 47

7. Arrange the Components and terminals on your canvas as appropriate.

8. Click the Draw Wire tool .

9. Connect the pins and the clock to the shifters.

See Working with Wires, Drawing Buses, and Wire Labels and Names, as needed for instructions about
different techniques,

When you're finished making all the connections, your schematic should look similar to the following image:

Notice that all the errors have cleared in the Notice List window.

Tip You can copy and paste similar wires to different locations; therefore, if you equally space items in your
design, you can replicate them more easily.

10. From the Build menu, select Build Shifter.

The Output window shows messages indicating a successful build.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 48

The Workspace Explorer shows a Generated Files folder with generated design files.

Close the Design:

From a basic perspective, this 8-bit shifter is an example of a hierarchical design. The design was built with two 4-
bit shifters, which were built on D Flip Flops. You could use this shifter to create a Component for use in another
design, and that design could be used in another, and so on. You will use the same basic principles and tools for
every design you create with PSoC Creator.

To close this design (and its project and workspace), select Close Workspace from the File menu.

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 49

How To

This section contains various "how to" topics to help you learn how to get the most from PSoC Creator. This
section is broken down into various categories, as follows:

General PSoC Creator Tasks:

◼ Creating a New Project

◼ Finding Code Examples

◼ Opening an Existing Project

◼ Adding a New Workspace/Project Item

◼ Adding an Existing Project Item

◼ Assigning a Core to File in a Multi-Core Design

◼ Archiving a Workspace/Project (Bundling)

◼ Copying a Project

◼ Generating a Project Datasheet

◼ Creating a New File

◼ Opening an Existing File

◼ Creating Folders

◼ Copying a Project

General Design Entry Tasks:

◼ Design Entry Options

◼ Working with Text

◼ Using Text Substitution

◼ Working with Lines

◼ Working with Shapes

◼ Zooming

◼ Scrolling

◼ Selecting a Device

◼ Using the Notice List Window

Schematic Editor Tasks:

◼ Creating a New Schematic

◼ Using the Component Catalog

◼ Configuring Components

◼ Working with Wires

◼ Drawing Buses

◼ Working with Schematic Terminals

◼ Adding a Schematic Page

◼ Updating Components

◼ Importing a Component

Text Editor Tasks:

◼ Writing Code

◼ Using the Text Editor

◼ Using Find Replace

◼ Using Wildcards

◼ Using Regular Expressions

◼ Using Go To

Getting Started

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 50

Framework:

◼ To Float Tool Windows

◼ To Dock Tool Windows

◼ To Use Tabbed Documents

◼ To Move Tool Windows

◼ To Auto-Hide Tool Windows

Debugger Tasks:

◼ Using the Debugger

◼ Using Program/Debug Options

◼ Using the Breakpoints Window

◼ Using Debugger Menu Commands

◼ Selecting a Default Compiler

Symbol Editor Tasks:

◼ Creating a Symbol

◼ Using the Symbol Wizard

◼ Adding a Component Item

◼ Working with Component Terminals

◼ Creating Symbol Parameters

◼ Defining Catalog Placement

◼ Exporting a Component

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 51

3 Understanding PSoC Creator

PSoC Creator provides a PSoC hardware/software co-design environment, with software development tools, a
graphical design editor, a device selector, and various features for project management. There are many concepts
referenced within this PSoC Creator help with which you may not be familiar. This section helps you have a deeper
understanding of PSoC Creator. It contains the following sub-sections:

◼ Concepts

◼ General Tasks

◼ Framework

Concepts

To help you better understand PSoC Creator, you should become familiar with the following terms and concepts:

◼ Workspace/Project

◼ Project Types

◼ Component/Instance

Workspace/Project

The PSoC Creator integrated development environment (IDE) provides two containers to help you manage items in
your designs: workspaces and projects.

◼ Workspace – A workspace is the top-level container within PSoC Creator; it contains one or more projects that
you can open, close, and save together. You can only have one workspace for any given PSoC Creator
workspace file (.cywrk).

◼ Project – A project contains multiple items that represent your design, such as schematics, design-wide
resources, source code, and hex files. The types of items contained within a project vary according to the
project type. A project is always part of a workspace. You can create projects in an existing workspace or you
can create a new workspace as part of creating a new project.

PSoC Creator provides workspace folders to organize related projects into groups and then perform actions on
those groups of projects. You can view and manage your workspace, projects, and their associated items using the
Workspace Explorer. A workspace and projects allow you to use the IDE in the following ways:

◼ Manage settings for your workspace as a whole or for individual projects.

◼ Use Workspace Explorer to handle the details of file management while you focus on items that make up your
design.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 52

◼ Add items that are useful to multiple projects in the workspace or to the workspace without referencing the item
in each project.

◼ Work on miscellaneous files that are independent from the workspace or projects.

When you create a multi-project workspace, the first design project created becomes the active project, by default.
The active project appears in bold font in Workspace Explorer and is the project that runs when you click Start on
the Debug menu. You can build either a single project within the workspace or multiple projects in the workspace.
You can also specify which workspace projects you wish to exclude from builds. For more information, see Building
a PSoC Creator Project.

See Also:

◼ Project Types

◼ Workspace Explorer

◼ Building a PSoC Creator Project

Project Types

A PSoC Creator project contains multiple items, such as schematics, Components, design-wide resources, source
code, and hex files. PSoC Creator provides two types of projects: design and library.

◼ Design Project – A design project is used to create and modify designs. With a design project, select and
configure the Components for your device in a schematic. Next, set up design-wide resources, such as clocks
and interrupts. Then, write the C code for your application. Finally, you build (and debug) the project to
generate the hex file and program the device. When you first create a design project, PSoC Creator creates the
project/workspace files and directory structure, as well as the top-level schematic, main.c shell file, and a
design-wide resources file (.cydwr).

◼ Library Project – A library project is a collection of one or more Components and the associated source code.
With a library project, you can develop Components that will be elaborated in a design, as well as reused in
many designs. Library Projects can also be used to create static libraries that can be linked in to a design. Each
library can serve either purpose (or both at the same time). Component development includes creating the
graphic symbol, defining parameters, and specifying validation requirements. When you first create a library
project, PSoC Creator creates the project/workspace files and directory structure. Library project(s) are
included in PSoC Creator as Dependencies to determine which Components are available for your designs in
the Component Catalog.

Project names have a .cyprj extension, such as ProjectName.cyprj. In addition, project files must always be located
in a directory named either ProjectName.cydsn (design) or ProjectName.cylib (library).

See Also:

◼ Component

◼ Component Catalog

◼ Dependencies

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 53

Component/Instance

A Component is a collection of files, such as a symbol, schematics, APIs, and documentation that defines
functionality within the PSoC Device. Examples of Components include a timer, counter, and a mux. An instance is
a Component that has been selected from the Component Catalog and used in a design. You can have multiple
copies – or instances – of a Component in a design, as long as the selected device can support it. You can also
create and reuse your own Components/instances.

Files that make up a Component/instance include the following:

◼ Symbol – A symbol contains the basic definition of a Component. It contains the top-level picture shown in the
Component Catalog, as well as the parameter definitions. There can be only one symbol in a Component.

◼ Schematic – A schematic defines how a Component has been implemented visually. A schematic can be
generic for any PSoC device, or it can be architecture, family and/or device specific.

◼ API – Application Programming Interface. APIs define how to interact with a Component using C code. They
can be generic for any PSoC device, or they can be architecture, family and/or device specific.

◼ Verilog – Verilog can be used to define the functionality of a Component implemented in Verilog. There will only
be one Verilog file in any given level of a Component. Verilog files found at different levels of the Component,
such as at an architecture, family and device level, may not refer to each other.

◼ Control File – The control file contains directives to the code generation module. For more information, see
Control File and Directives.

◼ Documentation – The documentation of the Component is generally its datasheet.

◼ CyPrimitive – A CyPrimitive is a basic Component item, such as a logic gate, interrupt, or DMA.

Note A symbol need not be primitive -- it could be a primitive for some device, but implemented out of logic and
software for another device.

See Also:

◼ Component Catalog

◼ Control File

◼ Directives

General Tasks

The following are some of the general tasks you will perform with PSoC Creator:

◼ Creating a New Project

◼ Opening an Existing Project

◼ Adding a New Workspace/Project Item

◼ Adding an Existing Project Item

◼ Assigning a Core to File in a Multi-Core Design

◼ Writing Code

◼ Archiving a Workspace/Project

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 54

◼ Saving a Project As

◼ Generating a Project Datasheet

◼ Generating Description Files

◼ Copying a Project

◼ Selecting a Default Compiler

◼ Creating a New File

◼ Opening an Existing File

◼ Creating Folders

Creating a New Project

The Create New Project wizard is used to create new PSoC Creator projects.

Use this wizard to:

◼ select the kit, module, or device

◼ select the type of project to create; see Project Types

◼ specify the project name and location

◼ choose whether to create a new workspace or add to an existing workspace; see Workspace/Project

To Open this Wizard:

From the File menu, select New > Project… or click Create New Project on the PSoC Creator Start page.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 55

To Create a New Project:

Select project type

Choose one of the following:

◼ Target kit: Use this option to select a specific kit, or the last used kit.

◼ Target module: Use this option to select a specific module, or the last used module.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 56

◼ Target device: Use this option to select a device family and series, the last used device, or to launch the
Device Selector.

◼ Library project: Selection this option to create a library project.

◼ Workspace: Select this option to create an empty workspace.

Click Next >.

Select project template (Design Projects Only)

Choose one of the following:

◼ Code example: Choose this option to select a starter project from a list of available examples. See Code
Examples.

◼ Pre-populated schematic: If available, select this option to create a design with Components already placed
on the design schematic.

◼ My Template project: If you have previously copied a project to My Templates, select this option to create a
new project based on a selected My Template project. See My Templates.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 57

◼ Empty schematic: Choose this option to create a blank schematic canvas (not available for PRoC BLE
designs).

Click Next >.

Select Library Project Processors (Library Projects Only)

Choose one or more processors for which this library will be built. You can also select more and different
processors on the Build Settings dialog for library projects.

Note If you select DP8051 (for PSoC 3) you cannot select any Cortex processor, and vice-versa. You will need to
create separate library projects.

Click Next >.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 58

PSoC 6 Only Select Target IDEs

For PSoC 6 devices only, the Select Target IDEs step allows you to select one or more IDEs for which to generate
files. If you select to generate files for CMSIS Pack (for Eclipse or ARM MDK) a note will display indicating where
the files will be located, as well as information to change the name and version of the pack. See Build Settings >
Target IDEs and Generating PSoC 6 Files for 3rd Party IDEs for more information.

Click Next >.

Create Project (All Projects)

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 59

◼ Workspace – Select the appropriate option:

□ Create new workspace: Use this option to create a new workspace, and specify a location to save the
workspace.

□ Add to current workspace: If creating a new project in a workspace that is already open, select this
option to add the new project to the existing workspace.

◼ Workspace name – For a new workspace, type a name for the workspace.

◼ Location – Specify a location for the project/workspace.

◼ Project name – Type a name for the project.

Note The project name cannot exceed 80 characters.

Note If creating a blank workspace, this page will not have a Project name option.

Click Finish.

◼ If you create a design project, PSoC Creator will create files and open the Schematic Editor by default.

◼ If you create a library project or empty workspace, PSoC Creator will create the library or empty workspace
infrastructure in the Workspace Explorer.

See Also:

◼ Project Types

◼ Workspace/Project

◼ Device Selector

◼ Schematic Editor

◼ Workspace Explorer

◼ Opening an Existing Project

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 60

Opening an Existing Project

The Open Project dialog is used to open an existing PSoC Creator workspace/project.

Use this dialog to browse and select the workspace file (.cywrk) or project file (.cyprj) to open. You can open an
existing project that you created or one of the many examples provided with PSoC Creator.

To Open this Dialog:

From the File menu, select Open > Project/Workspace… or click Open Existing Project on the PSoC
Creator Start page.

To Open a Project:

1. Navigate to the appropriate directory where the project to open is located.

2. Select the desired project and click Open.

The project opens in PSoC Creator, and it is shown in the Workspace Explorer.

Note You can also open recent projects without this dialog using Recent Projects on the Start page or on the File
menu.

See Also:

◼ Workspace/Project

◼ Workspace Explorer

◼ Creating a New Project

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 61

Adding a New Workspace/Project Item

The New Item dialog allows you to add new items to your workspace/project.

The dialog provides templates of the different types of items you can add. Source files will be compiled as part of a
build; non-source files will be ignored.

Note You cannot use this dialog to create new items for Components. Instead you must use the Add Component
Item dialog.

To Open the Dialog:

1. In the Workspace Explorer, under the Source tab, select the level at which you want to add the item:
workspace, project, or folder.

2. From the Project menu, select New Item... .

You can also right-click on a workspace, project, or folder and select Add > New Item from the context menu.

To Add an Item:

1. In the Templates area, select the icon for the type of item to add to your workspace/project. Currently the
available templates include:

□ 8051 Keil Assembly File – Used to create an assembly file that will be compiled when you select the
Keil tool-chain.

□ C File – Used to create a standard C source file.

□ C# File – Used to create a standard C sharp source file.

□ Design Wide Resource File – Used to create a file for editing design level resources, such as
interrupts, clocks, etc.

□ GNU ARM Assembly File – Used to create an assembly file that will be compiled when you select the
GNU ARM tool-chain.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 62

□ Header File – Used to create a standard C Header file.

□ HTML File – Used to create an HTML file for documentation purposes.

□ Keil Reentrancy File – Used to mark APIs as reentrant. See Reentrant Code in PSoC 3.

□ RealView ARM Assemly File – Used to create an assembly file that will be compiled when you select
the RealView ARM tool-chain.

□ Resx File – Used to create a resource file.

□ Text File – Used to create an empty text file.

□ XML File – Used to create an empty XML file for whatever you want it for.

There are two buttons on the top right side of the dialog to change the size of the icons. Below the Templates
area is a text box that displays a brief description for each Component item.

2. Specify a file name for the item in the Name field.

3. Click OK.

The item is added at the location you selected in the Workspace Explorer, and an empty file of the type you added
opens in the Text Editor as a tabbed document.

See Also:

◼ Adding an Existing Project Item

◼ Workspace/Project

◼ Adding a New Component Item

◼ Workspace Explorer

◼ Text Editor

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 63

Adding an Existing Project Item

PSoC Creator provides the ability to add an existing project item, such as an assembly or header file to a current
project. This could be a file used in other projects, or a file that another person created as part of a design team.

To Add an Existing Item:

Right-click on a project in the Workspace Explorer and select Add > Existing Item. You can also select Existing
Item from the Project menu.

Either method opens the Open dialog.

Use this dialog to browse and select item to add to the current project, and then click Open.

Notes

Some file types, such as *.cyre, are copied from their existing location to the current project's cydsn folder; other file
types, such as header files are not. Be aware of which files are not copied for portability issues.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 64

If you add an existing assembly file, you may need to select the correct file type from the drop-down menu in the
Properties dialog.

See Also:

◼ Adding a New Workspace/Project Item

◼ Workspace/Project

◼ Adding a New Component Item

◼ Workspace Explorer

Assigning a Core in a Multi-Core Design

When you create a new multi-core PSoC 6 project, the initial project structure in the Workspace Explorer includes a
folder for each core (CM0p and CM4), as well as a folder for source files that are to be built for all cores on the
device (Shared Files). By default, these folders and any files in them will be built for the specific cores: CM0p for
CortexM0p, CM4 for CortexM4, and Shared for both.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 65

Cores Property

All files and folders for multi-core designs have a category of properties named Build filters. Among these
properties is one named Cores, and it controls which source files are built for each core. If you open a folder's
Properties dialog, you can modify the Cores property value. Setting the property value to "All" will cause all source
in that folder to be built for all available device cores.

Notes:

◼ When adding a new file to a folder, that file's Cores property value will default to its parent folder's value.

◼ When adding a new folder at the project level, that new folder's Cores property value will default to a value of
"All."

◼ When adding a new folder at another level, that new folder's Cores property value will default to its parent
container's value.

◼ When moving a file from one folder to another, that file's Cores property will take on the value of its new parent
folder.

Processor Property

Another Build filters property is named Processors, and it is used to differentiate between multiple cores of the
same type (for example, a device with multiple CM4 cores, when you want a file to be built for only one of those
multiple CM4 cores).

See Also:

◼ Workspace Explorer

◼ Properties

◼ Building a PSoC Creator Project

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 66

Writing Code

PSoC Creator provides a Code Editor to write C code for your designs. You can use this tool or any other preferred
code editor you prefer. If you use the PSoC Creator Code Editor, files you create, edit, and save as part of your
design will be integrated into the Save and Build processes automatically. Files you edit externally can still be
included in the Build process, but if you make changes external to PSoC Creator, make sure you save those
changes using your preferred tool.

Embedded Programming with C - Beginners Resources:

See the following link for information and links to resources for writing C code:

◼ http://www.cypress.com/blog/psoc-creator-news-and-information/matts-tips-embedded-programming-c-
beginners-resources

Including Code in Generated Source

As described in the Building a PSoC Creator Project section, PSoC Creator generates code when you build your
project/workspace. Sometimes, you may want to run or include your own code with that generated code. PSoC
Creator provides two methods to do this:

◼ Macro Callbacks (preferred)

◼ Merge Regions (legacy)

Macro Callbacks

Macro Callbacks is a term defined in PSoC Creator to call user code from macros specified in a Component's
generated code. These macros can be used by defining them in the user-defined header file named
cyapicallbacks.h. This file will be included in all generated source files that offer callbacks.

A callback requires you to complete the following:

◼ Define a macro to signal the presence of a callback (in cyapicallbacks.h).

◼ Write the function declaration (in cyapicallbacks.h).

◼ Write the function implementation (in any user file).

To complete the example, the cyapicallbacks.h file would include this code:

#define SimpleComp_1_START_CALLBACK

void SimpleComp_1_Start_Callback(void);

In any other user file, you could include cyapicallbacks.h and write the SimpleComp_1_Start_Callback() function.

Merge Regions

Merge Regions provide another method to insert user code, through the use of specially marked sections in
generated code, such as:

/* `#START isr_Interrupt` */

/* `#END` */

Anything you place in this region will be preserved in subsequent updates of the file. If a subsequent version of the
file does not contain the same named region, the entire region from the previous file will be copied to the end of the
file and placed in comments.

http://www.cypress.com/blog/psoc-creator-news-and-information/matts-tips-embedded-programming-c-beginners-resources
http://www.cypress.com/blog/psoc-creator-news-and-information/matts-tips-embedded-programming-c-beginners-resources

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 67

See Also:

◼ Code Editor

◼ Building a PSoC Creator Project

Archiving a Workspace/Project

The Workspace/Project Archiver dialog allows you to archive an entire workspace or a project from the current
workspace. You can also use it to bundle an entire workspace, including dependent projects. The archive can either
be zipped or not. Only the files registered with the workspace/project and any file that PSoC Creator generates can
be archived.

To Open the Dialog:

1. Open the PSoC Creator workspace/project you want to archive.

2. Use one of the following methods, as applicable:

□ Select Archive Workspace/Project... from the Project menu

□ Right-click on a project or workspace in the Source tab of the Workspace Explorer and select Archive
Workspace/Project...

□ Select Create Workspace Bundle… from the File menu.

Note If there are any modified files in the workspace, you will be prompted to save them before the dialog will open.

To Archive a Project/Workspace:

1. Select the Source workspace or project to archive.

2. Specify the Destination where to create the archive. Either type the path, or click [...] and browse to the
appropriate directory.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 68

3. Select the Compress Archive check box to create a zip file that contains the archive; de-select to choose not
to zip the archive.

4. Select one of the following levels as desired:

□ Minimal – This level includes project source files and generated source files. Only non-external files
are archived. Non-external files are those files located under the archiving source’s parent directory on
disk.

□ Complete – This level includes project source files, generated source files, all derived files (build
output files), and user data files. Only non-external files are archived. Non-external files are those files
that are located under the archiving source’s parent directory on disk.

□ Bundle – This level includes project source files, generated source files, all derived files (build output
files), user data files, and dependant projects. External files are included in this level. Also,
project/workspace files have their dependencies/links updated to reference the archived copies of the
projects/files. This is to achieve the goal of being able to open a bundle from anywhere and it will
always behave the exact same (that is, have all its references with it).

□ If you choose the bundle option, a workspace will always be archived. If a workspace is selected as a
source, it will be archived. If, however a project is selected, a new workspace will be created that
contains only the project to archive and it will be archived. This is done because there are project
dependencies that are stored on the workspace which need to be included.

− Name – Enter a name to rename the archived workspace. If zipped, it will also be used as the
zipped file name.

− Include standard Cypress libraries – Select this check box to include a copy of all Cypress
libraries (CyPrimitives and CyComponentLibrary) in the archive. This will add dependencies to
the archived copies, and they will be used prior to the standard Cypress libraries installed on
the machine.

5. Click Archive. The dialog shows the progress and reports success or failure.

□ If successful, an Open archive in Windows Explorer check box displays to open the archive location
upon clicking OK.

□ If not, an error message will be displayed explaining the cause of the failure.

6. Click OK to close the dialog.

See Also:

◼ Workspace/Project

◼ Saving a Project As

◼ Copying a Project

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 69

Saving a Project As

PSoC Creator allows you to save a project with another name in the same location or with any name in a different
location. This is useful when you want to have a back-up project and you do not wish to use the Archiving tool.

To Save a Project As:

Select the project and select Save <project> As... from the File menu.

You can also right-click on a project in the Workspace Explorer and select Save <project> As...

The standard Windows Save As dialog opens to select a location and enter a name for the project to save.

See Also:

◼ Archiving a Project

◼ Copying a Project

Generating a Project Datasheet

A project datasheet is a PDF document generated from your PSoC Creator project. It includes:

◼ Overview of your selected PSoC chip architecture

◼ List of chip resources used

◼ Pins

◼ Design-wide resource settings (clocks, interrupts, DMA, flash security, etc.)

◼ Schematic sheets

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 70

◼ Components and parameter settings

The project datasheet acts as a snapshot summary of your completed design. It is useful as a hand-off document
from the engineering team, who configure the hardware portion of a PSoC design, to the firmware team who are
programming it. This is helpful if the firmware team is using an IDE other than PSoC Creator, without direct access
to PSoC design configuration data.

To Generate a Project Datasheet:

1. The project for the datasheet to be generated must be the active project. If necessary, right-click on the project
under the Source tab in the Workspace Explorer, and select Set as Active Project.

2. If the project has not been built, or if there were changes made since it was last built, build the project at this
time.

3. Click the Build menu and select Generate Project Datasheet.

If you attempt to generate a project datasheet without updating the build first, PSoC Creator will display a
message and allow you to rebuild the project first.

When the datasheet has been generated, it will be listed under the Documentation tab in the Workspace Explorer.
Double-click the file to open in the same manner as any other document.

See Also:

◼ Workspace Explorer

◼ Building a PSoC Creator Project

Generating Description Files

PSoC Creator provides a feature to generate two XML-based files that describe the contents of various design
entry files (schematic, schematic macro, symbol, UDB, and sheet template). One file (.cysem) contains all the
semantically meaningful data from the source. The other file (.cyvis) includes the cosmetic information from the
source. There can be several sets of these .cysem and .cyvis files in a project, depending on the types of design
entry files you create in a project.

The generated files can be used as documentation for the design. You may also compare these XML-based files
from different projects to determine the differences between them, using any text diff utility program. You may
include these files in revision control repositories because they enable a reader to determine what changed in a
particular PSoC Creator file. However, this is not a revision control feature per se.

Note This feature is turned off by default for every project you create.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 71

To Enable the Feature (Per Project):

In the Workspace Explorer, right-click on a project and select Properties. to open the Properties dialog.

Select True for the Generate Description Files property, and click OK to close the dialog.

To Generate Description Files:

The description files are not automatically generated when the option is enabled. They will not be created for a file
until you save a change to that file. After making a save, the files are saved next to the particular design entry file
on disk from which it was generated.

Notes:

◼ If either file is a set as read-only file, a dialog will display requesting to make it writable.

◼ If you disable the feature, any previously generated files will remain on disk.

◼ The generated files will be included in all levels of project archiving, as long as the feature is enabled.

Command Line

Command line options have been added to help facilitate this feature, including:

◼ -generateDescFiles: For all specified projects that have 'Generate description files' enabled, generates the
description files.

◼ -verifyDescFileEnabled: Verifies that all specified projects have 'Generate description files' enabled.

◼ -verifyDescFileContents: Verifies that all specified projects (that have 'Generate description files' enabled) have
generated files that are in-sync with the current version of their source files.

See CyPrjMgr Command Line Tool for more information.

See Also:

◼ Workspace Explorer

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 72

◼ Properties

◼ Source Code Control

◼ Archiving a Workspace/Project

Copying a Project

PSoC Creator allows you to copy a project within a workspace, as well as from workspace to another.

To Copy a Project:

Right-click on the project in the Workspace Explorer and select Copy.

To Paste a Project:

Right-click on a project or workspace in the Workspace Explorer and select Paste.

The copied project is added to the workspace with "_Copy_01" appended to the project name.

See Also:

◼ Archiving a Project

◼ Saving a Project As

Selecting a Default Compiler

For all target devices, PSoC Creator supports multiple toolchains. While there is a preferred default for each family,
you may change the tools used on a per-project basis using the option under Build Settings. However, if you have
installed an external compiler, you can specify the default to use for every new project under Project Management
Options. To select a default compiler:

1. Select Options from the Tools menu.

2. Expand Project Management, and select either DP8051 Toolchains or ARM Toolchains.

3. Select the Default Toolchain pull-down menu and select the appropriate option.

For the selected toolchain, a warning indicator will display.

4. Click the Browse [...] button, navigate to the location where the binary file is stored, select it, and click OK.

5. Click OK to close the Options dialog.

See Also:

◼ Options Dialog

◼ Build Settings

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 73

Creating a New File

The New File dialog is used to create new files with PSoC Creator. The dialog provides templates of the different
types of files you can create. You may want to create a file for many reasons, such as having a file to copy and
paste code.

Creating a new file is not the same as adding a file to a project or adding a Component item. This process merely
creates an empty file of the type you specify. To add a new file to your project, see Adding a New
Workspace/Project Item. To add a Component item to your project see Adding a Component Item.

To Open this Dialog:

From the File menu, select New > File... .

To Create a New File:

Select the icon for the type of file to create and click OK.

An empty file of the type you created opens in the Text Editor as a tabbed document with a default name.

Note The file is not saved to disk until you specify a name and location to save it.

See Also:

◼ Text Editor

◼ Workspace/Project

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 74

Opening an Existing File

The Open File dialog is used to open an existing file within PSoC Creator. You may want to open a file for many
reasons, such as having a file to copy and paste code.

Use this dialog to browse and select files you wish to open, such as source code and text files. Opening a file using
this dialog merely opens the file in PSoC Creator. That file is not part of any project you may have open. To add a
file to an existing project, see Adding a New Workspace/Project Item.

To Open this Dialog:

From the File menu, select Open > File... .

To Open a File:

1. Navigate to the appropriate directory where the file to open is located.

2. Select the desired file and click Open.

The file opens in the Text Editor as a tabbed document.

See Also:

◼ Text Editor

◼ Workspace/Project

◼ Creating a New File

◼ Opening an Existing Project

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 75

Creating Folders

In PSoC Creator, there are two different types of folders: physical and virtual. Physical folders are created on disk
by PSoC Creator as part of creating projects, Components, and devices/families/architectures. Virtual folders do not
exist on disk. You can create virtual folders in your workspaces and projects to organize things as you need them,
but you will not see those folders using Windows Explorer.

Filters:

Each folder has a set of associated filters. When a new file is added to a project containing one or more folders,
that file will be added to the first folder with a filter matching the extension of the new file. This only occurs when
you add the file to the project directly.

To Create Physical Folders:

Use the PSoC Creator interface to create a new project, add Components, or generate files from a build. These
folders are created for you by PSoC Creator.

To Create Virtual Folders:

1. In the Workspace Explorer under the Source tab, right-click on a workspace, project, or folder and select Add
> New Folder or Add > New Workspace Folder.

A new folder is added to the selected item and given a default name.

2. Type a name for the folder and press [Enter].

See Also:

◼ Workspace Explorer

◼ Creating a New Project

◼ Creating a Symbol

◼ Building a PSoC Creator Project

PSoC Creator Framework

This section contains the following topics:

◼ Framework Description

◼ Window Types

◼ Framework Interface Components

◼ Customizing the Framework

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 76

Framework Description

The PSoC Creator framework provides numerous features to help organize your designs and complete projects
faster.

When you first open PSoC Creator, the framework displays with a Workspace Explorer, document work area, and
Output window. The framework also contains a menu and a status bar, as well as various toolbars that will change
depending on the type of file you are working with.

Workspace Explorer:

The Workspace Explorer is a docked tool window, which displays your project files in a similar manner to Windows
Explorer. If you double-click a file in the Workspace Explorer, that file will display in the work area. For more
information, see Workspace Explorer.

Document Work Area:

The document work area contains various files you have opened for your project. Depending on the type of file
displayed, different tools and commands become available. For example, if you open a source code file, you will
see toolbar commands for source code editing; if you open a schematic file, you will see commands for editing
schematics, such as the Component Catalog used for adding items to your schematic.

All files open in the work area display as tabbed documents, with the active document on top and the other
documents behind. For more information, see Document Windows.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 77

Start Page

The Start page is a general tabbed document window that is not part of any project. It provides links to create new
projects, open existing projects, as well as links to information and news about PSoC devices. It displays in the
same work area where other document windows will be opened as you work with your design.

You can configure whether or not to show the Start page on startup; see Environment Options.

Output Window:

The Output window is another docked tool window that shows various system messages. For more information,
see Output Window.

Status Bar

The status bar displays informational messages regarding the status of your design. If there are Components that
need to be updated, there will be an indication (see Component Update). The status bar also shows the number of
errors, warnings, and notes that are contained in the Notice List window.

See Also:

◼ Window Types

◼ Document Windows

◼ Tool Windows

◼ Framework Interface Components

Window Types

PSoC Creator has two types of windows: tool windows and document windows. These two window types behave in
slightly different ways.

Tool windows:

Tool windows are listed on the View menu and are defined by the current application and its add-ins. They include
the Workspace Explorer, Output Window, and Component Catalog. You can configure tool windows to:

◼ Show or hide automatically

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 78

◼ Tab link with other tool windows

◼ Dock against the edges of the framework

◼ Float over

See Tool Windows for more information.

Document windows:

Document windows are dynamically created when you open or create files or other items. The list of open
document windows appears on the Window menu, with the top-most window listed first. These can include source
code files, schematic files, symbol files, and design-wide resources files. See Document Windows for more
information.

Arranging Windows:

You can increase the viewing and editing space for code, depending on how you arrange the windows. You have
several options for arranging windows, including the following:

◼ Tab-dock document windows

◼ Dock tool windows to the edge of a frame

◼ Minimize tool windows along the edge of the frame

◼ Tile document windows

See Customizing the Framework for more information.

See Also:

◼ Tool Windows

◼ Document Windows

Tool Windows

Tool windows are listed on the View menu and they include some of the following:

◼ Workspace Explorer

◼ Output Window

◼ Component Catalog

These windows provide different types of functionality within PSoC Creator; however, they all can be arranged
within the framework using the same techniques.

Tool Window Toolbar:

Every tool window contains the following toolbar commands:

◼ Window Mode – This pull down menu allows you to toggle the window to different modes, including:

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 79

◼ Floating – Sets the tool window as a floating window not attached to the PSoC Creator framework.

◼ Dockable – Sets the tool window as dockable to the PSoC Creator framework.

◼ Tabbed Document – Sets the tool window as a tabbed document window.

◼ Auto-Hide – Sets the tool window to slide to the edge of the framework when not in use.

◼ Hide – Closes the tool window.

These are the same commands available from the tool window right-click context menu.

◼ Auto-Hide Pushpin – This command toggles the auto-hide feature on and off.

◼ Close – This command closes the tool window.

See Also:

◼ To Auto-Hide Tool Windows

◼ To Move Tool Windows

◼ To Dock Tool Windows

◼ To Float Tool Windows

Document Windows

Document windows are dynamically created when you open or create files or other items. They display in the
document work area as tabbed documents, with the active document on top and the other documents behind.

The following sections describe various aspects of displaying and working with document windows.

Document Work Area Toolbar:

The toolbar at the top right of the document work area contains the following commands:

◼ Select Document – This pull down menu displays a list of open document windows in the work area according
to the tab order. You can use this menu to select another open document to display.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 80

◼ Scroll Left/Right – The left/right scroll arrows are available if there are more open documents to display to the
left or right of the visible work area.

◼ Close – This command closes the active document

Document Tab Context Menus:

You can right-click on a tab to display a context menu. There are two different types of context menus: one for
project files and another for non-project files.

Project File Context Menu

Project files, such as a source code file or a schematic file, can only be displayed as a tabbed document in the
document work area. When you right click on a project file tab, the following commands will be available depending
on the context of the selected project file:

◼ Save – Saves selected file.

◼ Close – Closes selected file.

◼ Close All But This – Closes all open tabbed documents except the
selected file.

◼ Copy Full Path – Copies the full path of the file to the clipboard for
pasting into a text file.

◼ Open Containing Folder – Opens the folder in which the file is
located.

◼ New Horizontal Tab Group – Creates a new horizontal tab group
and moves the selected file to that group.

◼ New Vertical Tab Group – Creates a new vertical tab group and
moves the selected file to that group.

◼ Move to Next Tab Group – Moves the selected file to the next tab
group.

◼ Move to Previous Tab Group – Moves the selected file to the
previous tab group.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 81

Non-Project File Context Menu

Non-project files, such as the Start page, can be displayed as a tabbed document or as a floating or docked tool
window. The context menu for these types of files contains the following commands:

◼ Close – Closes selected file.

◼ Close All But This – Closes all open tabbed documents except the
selected file.

◼ Floating/Dockable/Tabbed Document – Toggles the display of the
file between a floating window, dockable window, or tabbed
document.

◼ Auto-Hide – Only active for a dockable window; allows the window
to collapse to the edge of the framework.

◼ Hide – Closes selected file/window.

◼ New Horizontal Tab Group – Creates a new horizontal tab group
and moves the selected file to that group.

◼ New Vertical Tab Group – Creates a new vertical tab group and
moves the selected file to that group.

◼ Move to Next Tab Group – Moves the selected file to the next tab
group.

◼ Move to Previous Tab Group – Moves the selected file to the
previous tab group.

To Select Document Windows:

When you have Tabbed Documents, document windows are placed side-by-side on tabbed panes as they are
opened. This makes it simple to cycle through the documents you are editing.

To move through open documents in order of use:

◼ Press [Ctrl] + [Tab] to activate open documents in the order that they were most recently touched.

◼ Press [Ctrl] + [Shift] + [Tab] to activate open documents in the reverse order.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 82

Tab Groups:

Tab Groups allow you to manage limited workspace while working with two or more open documents. You can
organize multiple document windows into either vertical or horizontal Tab Groups and easily shuffle documents from
one Tab Group to another.

Split Windows:

Some types of files, such as source code, allow you to view or edit two locations of the same file at once.

◼ To divide your document into two independently scrolling sections, select the Split icon located above the scroll
bar and drag to the desired location.

◼ To remove the split, drag from the split back above the scroll bar.

See Also:

◼ Tool Windows

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 83

Customizing the Framework

This section contains several "how to" topics that allow you to customize the PSoC Creator framework:

◼ To Float Tool Windows

◼ To Dock Tool Windows

◼ To Use Tabbed Documents

◼ To Move Tool Windows

◼ To Auto-Hide Tool Windows

To Float Tool Windows

You can float various PSoC Creator windows outside the framework. Floating means a window is not attached to
the framework.

1. Select the window you wish to float and select Floating from the Window mode menu.

Notice the window moves outside the PSoC Creator framework.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 84

2. Move the window from its current location to anywhere on your screen.

See Also:

◼ Tool Windows

◼ Framework Description

◼ To Move Tool Windows

◼ To Dock Tool Windows

To Dock Tool Windows

You can dock various windows in different locations within the PSoC Creator framework. Docking means attaching
a window to the framework.

1. Select the window you wish to move and select Dockable from the Window mode menu.

2. Drag the window from its current location toward another location within the framework.

Notice as you drag the window that docking guides appear at different locations.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 85

3. When the window you are dragging reaches the position where you want to dock it, place the mouse over the
corresponding portion of the guide.

An outline of the window appears in the designated area.

4. To dock the window in the position indicated, release the mouse.

Tool windows can be docked to the framework edge or other existing edges, as well as within other windows as
tabs. The following table shows the different docking guides and their meanings:

Dock to the left edge.

Dock to the right edge.

Dock to the top edge.

Dock to the bottom edge.

Dock to the left, right, top, or bottom edge or dock within the window as a tab.

See Also:

◼ Tool Windows

◼ Framework Description

◼ To Move Tool Windows

◼ To Float Tool Windows

To Use Tabbed Documents

As described under Window Types, certain windows can be docked to the framework or used as tabbed
documents. Tabbed documents appear side-by-side in an area of the tool:

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 86

To change a window to a tabbed document (for example the Workspace Explorer), right-click on the window header
and select Tabbed Document.

Note If a window cannot be changed to a tabbed document (such as the Component Catalog), the menu item will
be disabled (grayed out).

After the menu item is selected, the window will be shown as a tabbed document along with other open documents.

See Also:

◼ Window Types

◼ Tool Windows

◼ Document Windows

To Move Tool Windows

You can move various windows to different locations within the PSoC Creator framework, or even outside the
framework altogether.

1. Click the title bar of the window you wish to move.

2. Drag the window from its current location toward another location.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 87

Notice as you drag the window that docking guides appear at different locations.

3. Move the window to the desired location and release the mouse.

See Also:

◼ To Dock Tool Windows

◼ To Float Tool Windows

◼ Framework Description

◼ Tool Windows

To Auto-Hide Tool Windows:

The auto-hide feature allows you to see more of the PSoC Creator framework by minimizing tool windows along the
edges of the framework when not in use.

To Turn On Auto-Hide:

Turn on auto-hide using one of these methods:

◼ Select Auto-Hide from the Tool Window toolbar or right-click context menu.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 88

◼ Click the Auto-Hide Pushpin icon.

The window automatically slides to the edge of the framework. Its name is visible on a tab at the edge of the
framework.

To Show the Hidden Window:

Place your cursor on the tab to slide the tool window back into place.

To Turn Off Auto Hide:

Turn off auto-hide using one of these methods:

◼ Select Dockable from to Tool Window toolbar or right-click context menu, or

◼ Click to the Auto-Hide Pushpin again.

See Also:

◼ Framework Description

◼ Tool Windows

◼ To Move Tool Windows

◼ To Dock Tool Windows

◼ To Float Tool Windows

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 89

Framework Interface Components

The major PSoC Creator framework Components include:

◼ Workspace Explorer

◼ Output Window

◼ Notice List Window

◼ Resource Meter

◼ File Menu

◼ Edit Menu

◼ View Menu

◼ Project Menu

◼ Build Menu

◼ Debugger Menus

◼ Tools Menu

◼ Window Menu

◼ Help Menu

◼ Standard Toolbar

◼ Keyboard Shortcuts

Workspace Explorer

The Workspace Explorer is PSoC Creator’s method for displaying the contents of a workspace.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 90

The contents are displayed in a tree format, similar to Windows Explorer. There are also different tabs along the
side of the tool window that allow you to view different types of files by category.

Toolbar Commands:

The Workspace Explorer has two commands:

◼ Collapse to Project – Collapses the selected project tree to the top-level project.

◼ Collapse to Parent – Collapse the selected tree to the top-level node.

Note When you right-click on most items in the Workspace Explorer tree, you can access context-menu commands
relevant to the item selected. Most of these commands are described under Project Menu or Build Menu.

To Open a File:

Double-click any file in the Workspace Explorer to open it in the document work area as a tabbed document.

Source Tab:

The Source tab displays by default if no other tab was selected. PSoC Creator only shows files you added or that
were generated from the Code Generation step of a PSoC Creator build. The view is updated whenever a build
completes or PSoC Creator is given focus.

When in the Source tab, you will only be able to add new folders and files to projects, or create new projects. You
will not be able to manipulate Components. If you wish to add new items to Components, or new Components
entirely, you must use the Components tab.

Generated Source

In a design project, the Generated Source directory contains the source from the Code Generation step. Under the
Generated Source directory is a sub-directory for each architecture that has been built in the past. Each
architecture directory is further subdivided with virtual folders for each Component instance that provided an API. In
addition to the instance directories, the architecture directory contains other generated files, such as a project.h,
boot file, etc., with each project being a node in the tree. Each project in the workspace also displays all of its
contents. See Generated Files.

Components Tab:

The Components tab filters the contents of the workspace, showing only the Components belonging to each
project in the workspace, as well as the file and folder contents of all Components. You may add new Components
and items to Components, and you may add new projects while in this tab. You may add files and folders outside of
the Components, but only using the Source tab for those operations. For more information about Components,
refer to the Component Author Guide.

Documentation Tab:

The Documentation tab displays and provides quick access to documentation, including Technical Reference
Manuals (TRMs), as well as device and Component datasheets currently used in your design. As you add and
remove Components, or change devices, the list of available documents will update accordingly.

If you double-click a file, it will open in your default PDF reader tool.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 91

Results Tab:

The Results tab displays a dynamic listing of interesting files from the most recent build of each platform. A
platform will select a subset of build files to display, and there may be differences between what is displayed from
one platform to another.

If a platform or configuration has not been built, or if the folders created by that build have been deleted, the folder
for that platform will not be displayed. In addition, if platform and configuration directories are found, but an
expected file is missing, that file will appear grayed out, indicating it was not found on disk when expected.

The minimum set of files to be displayed for a Design build is as follows:

◼ Programming file

◼ Debugging file (if different from Programming file)

◼ Code Generation Report file (if Code Generation was run)

◼ Device File (when implemented)

Additional files that may be included are list files and map files.

For a Library build, the resulting library file will be displayed.

Files in the Results tab can be double-clicked to open an appropriate editor for the file, such as the Text Editor for a
report file. Other actions that may be available include programming a device or debugging, as appropriate. The
projects displayed in the Results tab cannot be modified in any way. The tab is simply a display of the results of
builds.

See Also:

◼ Workspace/Project

◼ Framework Description

◼ Building a PSoC Creator Project

◼ Generated Files

Output Window

The Output window displays status messages for various features in PSoC Creator, including the builder and
debugger. This window is usually located at the bottom of the PSoC Creator framework. It is often in the same
window group as the Notice List Window.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 92

Note When building a bootloader project, the flash size represents the number of bytes to store in flash (the same
way it works for normal projects). When building a bootloadable project, the bootloader size represents the size of
the flash rows consumed by the bootloader (the bootloader is padded to a multiple of the row size).

To Display the Output Window:

The Output window usually displays by default when you launch PSoC Creator. If the window was closed, you can
open it again by selecting Output Window from the View menu.

Toolbar:

Depending on which tool you are using, the Output window will have various toolbar commands for you to use. The
following are the most common commands:

Show output from

Displays one or more output panes to view. Several panes of information might be available, depending upon which
tools have used the Output window to deliver messages.

Clear all

Clears all text from the Output pane.

See Also:

◼ Framework Description

◼ Notice List Window

Notice List Window

The Notice List window combines notices (errors, warnings, and notes) from many places in your design into one
centralized list. If a file and/or error location is shown, you can double-click the entry to show the error or warning.
There are also buttons to Go To Error or View Details. This window is usually located at the bottom of the PSoC
Creator framework. It is often in the same window group as the Output window.

If your design's Notice List window contains notices, they are displayed in numbered rows. Above the rows are a
set of filters to show or hide notices, as follows:

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 93

◼ Workspace/Active Project – Use this combo box to show notices from all the projects (and their
dependencies) in the workspace or to show notices only from the active project (and its dependencies). This
filter only applies to notices associated with a project.

◼ Errors – These indicate there is at least one problem that must be addressed before you can build your
application. Typical errors could include: compiler build errors, dynamic connectivity errors in schematics, and
Design Rule Checker (DRC) errors. Errors from the build process remain in the list until the next build.

◼ Warnings – These report unusual conditions that might indicate a problem, although you can usually build
the application regardless.

◼ Notes – These are informational messages from the system to indicate something occurred.

Note Gray rows are notices not associated with the active project or one of its dependencies. They will not be
shown if the Active Project filter is selected from the combo box.

The Notice List contains the following columns:

◼ Icon – Displays the icons for the error, warning, or note. A specific row may also contain a tree control
containing individual parts of the overall message.

◼ Number – Displays the number of the notice.

◼ Description – Displays a brief description of the notice.

◼ File – Displays the file name where the notice originated,

◼ Error Location – Displays the specific line number or other location of the message, when applicable.

◼ Project – Displays the name of the project that contains the notice. White rows are for the Active project; grey
rows are for inactive projects.

Design Rule Checker (DRC):

The DRC evaluates your design based on a collection of pre-determined rules in the project database. The DRC
points out potential errors or "rule" violations in your project that might pose problems. It displays various messages
in the Notice List window.

Some connectivity and dynamic errors update as soon as you make changes to your design, while other errors
update on load and save operations.

To Open the Notice List Window:

The Notice List window is displayed by default. If you close the window, you can open it again by selecting View >
Other Windows > Notice List.

You can also re-open the window by selecting Windows > Reset Layout. However, this option will reset all
windows to the default positions.

To Display Errors in Tools:

Click on a notice in the list. If there is a link to the error, click the Go To Error button. You may also double-click any
warning or error in the Notice List window to show that error or warning in the appropriate tool. There is also a
command available to go to the error if you right-click on a notice.

◼ In a schematic, a translucent red highlight shows the source(s) of the error. You can turn highlighting on or off
using the right-click menu on a notice.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 94

◼ In a code file, the specific line of code with the error or warning will be highlighted.

To View the Message Description:

Click the button next to the message or click the View Details button to open the Notice Details dialog. There
is also a command available to view details if you right-click on a notice. The Notice Details dialog will display the
entire message, as well as additional information if available.

Context Menu:

As described previously, there is also a context menu if you right-click on a notice. The menu items available
include:

◼ Show/Hide Error Highlighting: Turns on/off highlight of the error.

◼ Go to the Error Location: Moves the display to the error, if applicable.

◼ More Information: Displays the Notice Details dialog for more information.

See Also:

◼ Framework Description

◼ Output Window

◼ Notice Details

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 95

Resource Meter

The Resource Meter is a graphical display of the resources used in the currently active project of your workspace. It
updates after every build. This keeps you notified of possible resource overuse and helps identify which resource is
the cause of the problem.

Description

Each resource contains a color-coded bar graph that shows the number or percentage of resources used. The
following table shows the colors used and indicate their meaning:

Color Description

Green Resource fits in the current design.

Red Resource is overused in the current design; build failed.

White Resource is not used.

If the build fails or only a partial build is performed (that is, Generate Application), any resources that did not have
their usage recalculated will be displayed as washed out, as it is potentially stale.

Note Any previous usage calculations will still be displayed; they just might not be accurate due to the fact that they
weren't recalculated.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 96

To Open the Resource Meter:

The Resource Meter is available after you open a project or create a new project. By default, this tool window is set
to auto-hide on the right side of the PSoC Creator framework. To display it, click the Resource Meter tab:

If the window is closed, you can open it again by selecting Resource Meter from the View menu.

File Menu

The File menu contains the following commands:

Menu Item Icon Shortcut Description See Also

New > Project

 Displays a dialog to create a new project. Creating a New
Project

File

 Displays a dialog to create a new file. Creating Files

Open > Project/Workspace

 Displays a dialog to open an existing
project/workspace.

Opening an Existing
Project

File

[Ctrl] + [O] Displays a dialog to open an existing file. Opening an Existing
File

Code Example Displays a dialog to open a code example. Find Code Example

Add > New Project Adds a new project to the workspace.

 Existing Project Adds and existing project to the workspace.

Close [Ctrl] +
[F4]

Closes the active document window. Window Types

Close Workspace

 Closes the workspace.

Save

[Ctrl] + [S] Saves the active document.

Save <Project / File> As Displays a dialog to save the selected project or file
as another project or file.

Saving a Project As

Save All

[Ctrl]+
[shift] + [S]

Saves all the files in the workspace.

Create Workspace Bundle Opens the Workspace/Project Archiver wizard to
create workspace bundle.

Archiving a
Workspace/Project

Page Setup Opens the Page Setup dialog to select printing
layout options.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 97

Menu Item Icon Shortcut Description See Also

Print

[Ctrl] + [P] Prints the active document.

Print Preview Opens the Print Preview dialog for the selected file. Print Preview

Recent Files

Provides access to previously opened files.

Recent Projects Provides access to previously opened projects.

Exit Exits PSoC Creator.

Edit Menu

The Edit menu contains the following commands:

Menu Item Icon Shortcut Description See Also

Undo

[Ctrl] + [Z] Undoes the last action; can be used repeatedly to
undo multiple actions.

Redo

[Ctrl] + [Y] Redoes the last action.

Cut

[Ctrl] + [X] Cuts the selected element(s).

Copy

[Ctrl] + [C] Copies the selected element(s).

Paste

[Ctrl] + [V] Pastes the cut or copied elements from the clipboard.

Delete

[Delete] Deletes the selected element(s).

Select All [Ctrl] + [A] Selects all elements in active window.

Find and Replace >

 Find

[Ctrl] + [F] Opens a dialog to find text. Find Replace

 Replace

[Crtl] + [H] Opens a dialog to find and replace text. Find Replace

 Find in Files

[Ctrl] + [Shift] +
[F]

Opens a dialog to find text in multiple files. Find in Files

 Replace in Files

[Ctrl] + [Shift] +
[H]

Opens a dialog to find and replace text in multiple
files.

Replace in Files

Go To

[Ctrl] + [G] Opens the Go To dialog. Go To Line

Advanced > Text Editor

 Tabify Selected
Text

 Converts spaces to tabs for the selected text. The
number of spaces per tab is defined in the Text Editor
Options Dialog.

 UnTabify Selected
Text

 Converts tabs to spaces for the selected text.

 Make Uppercase [Ctrl] + [Shift] +
[U]

Changes selected text to uppercase letters.

 Make Lowercase [Ctrl] + [U] Changes selected text to lowercase letters.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 98

Menu Item Icon Shortcut Description See Also

 View White Space [Ctrl] + [E], [S] Toggles on or off to show hidden characters, such as
spaces or tabs. Press and hold [Ctrl] and [E] keys,
release, and then press [S] key.

 Incremental
Search

[Ctrl] + [I] Find first instance of matching pattern after pressing
shortcut keys. Press [Ctrl] + [I] keys and the icon
displays. Then type letters to find.

 Comment
Selection

[Ctrl] + [E], [C] Comments selected line(s) of text. Inserts // at the
beginning of the line. Press and hold [Ctrl] and [E]
keys, release, and then press [C] key.

 Uncomment
Selection

[Ctrl] + [E], [U] Uncomments selected line(s) of text. Removes // at
the beginning of the line. Press and hold [Ctrl] and [E]
keys, release, and then press [U] key.

 Increase Line
Indent

 Indents the selected line(s) of text.

 Decrease Line
Indent

 Outdents the selected line(s) of text.

 Toggle Bookmark

[Ctrl] + [K], [Ctrl]
+ [K]

Inserts or removes a bookmark from the Indicator
Margin next to the line where the cursor is located.
Press and hold [Ctrl] and [K] keys, release, and then

press [Ctrl] and [K] keys again.

Outlining > Text Editor

 Toggle Outlining
Expansion

 [Ctrl] + [M], [M] If Start Automatic Outlining has been selected, this
command expands or contracts the outlining for
selected section of code. Press and hold [Ctrl] and [M]
keys, release, and then press [M] key again.

 Toggle All
Outlining

 [Ctrl] + [M], [L] f Start Automatic Outlining has been selected, this
command expands or contracts all outlining in the file.
Press and hold [Ctrl] and [M] keys, release, and then
press [L] key.

 Stop Automatic
Outlining

 [Ctrl] + [M], [P] Disables automatic outlining. Press and hold [Ctrl]
and [M] keys, release, and then press [P] key.

 Start Automatic
Outlining

 [Ctrl] + [M], [P] Enables automatic outlining.

Snippets >

 Insert Snippet... [Ctrl] + [K], [X] Opens a menu to select code snippets, if available.

 Surround with... [Ctrl] + [K], [S] Opens a menu to insert surround with snippets, if
available.

View Menu

The View menu contains the following commands:

Menu Item Icon Shortcut Description See Also

Output Window

 Open or display the Output window. Output Window

Workspace Explorer

 Open or display the Workspace
Explorer.

Workspace Explorer

Code Explorer

 Open the Code Explorer window for
the Code Editor.

Code Explorer Window

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 99

Menu Item Icon Shortcut Description See Also

Component Catalog

 Open the Component Catalog for the
Schematic Editor.

Component Catalog

Resource Meter

 Open the Resource Meter for the
currently active project.

Resource Meter

Other Windows >

 Notice List Open or display the Notice List
window.

Notice List Window

 Start Page

 Open or display the Start Page. Framework Description

Find Results Open or display Find Results
windows.

Find and Replace

Zoom In/Out/To [Ctrl] + [+] or Ctrl + [–] Adjusts size of the page according to
option

Project Menu

The Project menu contains the following commands:

Menu Item Icon Description See Also

New Item

Open New Item dialog to select a new item to add to
your project/workspace.

New Item

Add Component Item

Open Add Component Item dialog to add a new item to
your Component.

Add Component Item

Existing Item

Open the Open dialog to add an existing item to your
project/workspace.

Opening an Existing File

Import Component

Opens the Import Component dialog. Import Component

Update Components Opens the Update Component Tool dialog to update
selected Components.

Remove from
<Project/Workspace>

 Remove selected file/project from project/workspace.

Unload/Reload Project Alternately unloads and reloads the selected project in
the Workspace.

New Folder

Create a new virtual folder in the Workspace Explorer
but not on disk.

Show All Files

Open all files in a directory.

Set As Active Project Set the selected project as the active project.

Set As Top Component Set the selected Component as the top Component.

Dependencies Open the Dependencies dialog. Dependencies

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 100

Menu Item Icon Description See Also

Build Order Opens the Dependencies dialog to the Build Order tab. Dependencies

Device Selector Open the Device Selector. Device Selector

Archive Workspace/Project Opens the Archive Project dialog to archive the
workspace/project.

Archiving a
Workspace/Project

Export to IDE

Opens a dialog to export the PSoC Creator design to an
external IDE.

Note This option is disabled for PSoC 6 projects. Refer
to Build Settings > Target IDEs.

Exporting a Design to 3rd
Party IDE

<Project> Resources Opens the Design-Wide Resources file for the project. Design-Wide Resources

Build Settings

Open the Build Settings dialog. Build Settings

Properties Opens the Properties dialog. Properties

Build Menu

The Build menu contains the following commands:

Menu Item Icon Shortcut Description See Also

Build All Projects

[F6] Build all projects in the workspace. Building a PSoC
Creator Project

Clean All Projects

 Clean all projects in the workspace.

Note During the clean process, PSoC Creator
cleans the build output of only those files that
are still part of the project. Any output files
generated using source files that are no longer
part of the project (deleted or simply removed
from project), will be left untouched.

Clean and Build All Projects

 Clean and build all projects in the workspace.

Build (Named) Project

[Shift] + [F6] Build the selected project.

Clean (Named) Project

 Clean the selected project.

Clean and Build (Named)
Project

 Rebuild the selected project.

Cancel Build

[Ctrl] + [Break] Cancel the build process.

Compile File

[Ctrl] + [F6] Compile the selected file.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 101

Menu Item Icon Shortcut Description See Also

Generate Application

 Generate API source code files. Generated Files

Generate Project Datasheet

 Generate a project datasheet. Generating a Project
Datasheet

See Also:

◼ Build Toolbar Commands

Debugger Menu Commands

The Debug menus provide access to all of the functionality and information available to the current debugger. There
are two modes for the menu: inactive and active.

Inactive Mode Debug Menu:

When the debugger is not running, the Debug menu will be in the inactive state. In this state, only the functions that
make sense are available on the menu. For instance, the Halt function is unnecessary in the inactive state. In the
inactive mode, the Debug Windows submenu provides access to a limited subset of the available debug windows.

Command Icon Shortcut Description

Windows > Provides access to the various debugger windows. See
Debugger Windows.

 Breakpoints

[Ctrl] + [D], [B] Opens the Breakpoints window to display all of the breakpoints
that have been set in the workspace.

 Output

[Ctrl] + [D], [O] Opens the Output window.

Program

[Ctrl] + [F5] Provides a one click means of programming the selected debug
target with the code generated from the selected project.

• Automatically starts a build if the project is out-of-date

• Updates the status bar’s message to indicate that
programming is taking place.

• Launches PSoC Programmer behind the scenes to
perform the programming.

Select Debug Target

 Opens the Select Debug Target dialog to manually select the
debug target to use.

Debug

[F5] Starts the debugger.

Debug without Programming

[Alt] + [F5] Starts the debugger without programming the device.

Attach to Running Target

 Opens the Attach to Target dialog to connect to an already
programmed target device. Applicable to PSoC 3 and PSoC 5LP
only.

Toggle Breakpoint

[F9] Alternately inserts and removes a breakpoint in the current line
of code. This is the same as clicking in the Indicator Margin of
the Code Editor. You can use the [F9] key as a shortcut for this

command.

New Breakpoint > Provides access to the following breakpoint windows. See
Breakpoints Window.

 Address Breakpoint

[Ctrl] + [D], [A] Opens the Address Breakpoint window.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 102

Command Icon Shortcut Description

 File Line Breakpoint

[Ctrl] + [D], [F] Opens the File/Line Breakpoint window.

 Function Breakpoint

[Ctrl] + [D], [U] Opens the Function Breakpoint window.

 Variable Watchpoint

[Ctrl] + [D], [V] Opens the Variable Watchpoints window.

 Memory Watchpoint

[Ctrl] + [D], [E] Opens the Memory_Watchpoint window.

Delete All Breakpoints

[Ctrl] + [Shift] + [F9] Deletes all breakpoints in the workspace instead of having to
remove each one individually. This is useful if there are multiple
breakpoints set but you just want the processor to run.

Enable All Breakpoints

 Enables all breakpoints

Active Debug Windows Menu:

The active debug mode indicates that you have started a debug session; that the active PSoC Creator subsystem
is the debugger. In the active mode, the debugger is running and you have the full range of available functions; the
Debug Windows submenu provides access to all of the available debug windows.

Command Icon Shortcut Description

Windows > Provides access to the various debugger windows. See Debugger
Windows.

 Breakpoints

[Ctrl] + [D], [B] Opens the Breakpoints window to display all of the breakpoints that
have been set in the workspace.

 Output

[Ctrl] + [D], [O] Opens the Output window.

 Watch >

 1

[Ctrl] + [D], [W] Opens one of four Watch windows to evaluate and display
variables, registers, or expressions.

 2

[Ctrl] + [Alt] + [W], [2]

 3

[Ctrl] + [Alt] + [W], [3]

 4

[Ctrl] + [Alt] + [W], [4]

 Locals

[Ctrl] + [D], [L] Opens the Locals window to view and modify all of the local
variables in the current debug frame.

 Components

[Ctrl] + [D], [P] Opens the Component Debug Window to view debug information
about Components in your design.

 Call Stack

[Ctrl] + [D], [C] Opens the Call Stack window to track the order that different
functions are called by the target program.

 Memory >

 1

[Ctrl] + [D], [M] Opens one of four Memory windows to display the values stored in
the memory of the processor.

 2

[Ctrl] + [Alt] + [M], [2]

 3

[Ctrl] + [Alt] + [M], [3]

 4

[Ctrl] + [Alt] + [M], [4]

 Disassembly

[Ctrl] + [Alt] + [D] Opens the Disassembly window to display the basic instructions
created for your source code.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 103

Command Icon Shortcut Description

 Registers

[Ctrl] + [R], [R] Opens the Registers window to display the core CPU registers and
their values

Program

[Ctrl] + [F5] Provides a one click means of programming the selected debug
target with the code generated from the selected project.

• Automatically starts a build if the project is out-of-date

• Updates the status bar’s message to indicate that
programming is taking place.

• Launches PSoC Programmer behind the scenes to perform
the programming.

Select Debug Target

 Opens the Select Debug Target dialog to manually select the debug
target to use.

Show Current Line

 Displays the line of code that is or will be executed.

Resume Execution

[F5] Continues the debugger. Starts the debug target running again after
a Halt or a breakpoint. Use this function to have the program
continue running to the next breakpoint.

Halt Execution

[Ctrl] + [Alt] + [Break] Pauses the debugger.

Stop Debugging

[Shift] + [F5] Stops the debugging session.

Rebuild and Run

[Ctrl] + [Shift] + [F5] Rebuilds the program and restarts the debugger.

Reset

[Ctrl] + [Alt] + [F5] Resets the debugger.

Step Into

[F11] Executes a single line of code. If the line is a function call, the
debugger will break at the first instruction in the function. If the line
is not a function call, the debugger will break at the following line of
code. Use this to verify that a line of code is doing what is expected.
This function temporarily allows the processor to run until it finishes

processing the instructions that make up the current line of code.

Step Over

[F10] Executes a single line of code. The debugger will break at the
following line of code. If the current line of code is a function call,
the function will be executed without stopping. The debugger will
then stop on the next line after the function call. Use this to verify
that a line of code is doing what is expected. This function
temporarily allows the processor to run until it finishes processing

the instructions that make up the current line of code.

Step Out

[Shift] + [F11] Finishes executing the current function. The processor is allowed to
run until the current function has finished. It will halt again at the first
instruction after the function call. Use this to exit the current function
and return to the calling method. This function temporarily allows
the processor to run until it finishes processing the instructions that
make up the current function.

Toggle Breakpoint

[F9] Alternately inserts and removes a breakpoint in the current line of
code. This is the same as clicking in the Indicator Margin of the
Code Editor. You can use the [F9] key as a shortcut for this
command.

New Breakpoint > Provides access to the following breakpoint windows. See
Breakpoints Window.

 Address Breakpoint

[Ctrl] + [D], [A] Opens the Address Breakpoint window.

 File Line Breakpoint

[Ctrl] + [D], [F] Opens the File/Line Breakpoint window.

 Function Breakpoint

[Ctrl] + [D], [U] Opens the Function Breakpoint window.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 104

Command Icon Shortcut Description

 Variable Watchpoint

[Ctrl] + [D], [V] Opens the Variable Watchpoints window.

 Memory Watchpoint

[Ctrl] + [D], [E] Opens the Memory_Watchpoint window.

Delete All Breakpoints

[Ctrl] + [Shift] + [F9] Deletes all breakpoints in the workspace instead of having to
remove each one individually. This is useful if there are multiple
breakpoints set but you just want the processor to run.

Enable All Breakpoints

 Enables all breakpoints.

Refresh Refreshes the debugger.

Enable/Disable Global
Interrupt

 Enable/Disable (depending on current state) Global Interrupt

See Also:

◼ Using the Debugger

◼ Debugger Toolbar Commands

◼ Text Editor Context Menu Commands

Tools Menu

The Tools menu contains the following commands:

Menu Item Description See Also

Find new Components Opens the Component Installer dialog to find and install new and
updated Components from the Cypress web site.

Component Installer

Find new devices Opens the Device Update Installer dialog to find and install new
devices from the Cypress web site.

Device Update Installer

Install drivers for µVision Opens the Installation Wizard to install MiniProg3 drivers for the
µVision IDE.

Installing MiniProg3 Drivers

Datapath Config Tool Launches the Datapath Configuration Tool for use when creating
Components implemented with Verilog.

Component Author Guide

DMA Wizard Opens the DMA Wizard. DMA Wizard

Component Tuners Allows direct access to tuner dialogs if included in your design. Tuner Communication
Setup

Bootloader Host... Launches the stand-alone Bootloader Host application. Bootloader Host Help file
(Press [F1] within the
application.)

Options... Opens the Options dialog. Options Dialog

Window Menu

The Window menu contains the following commands:

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 105

Menu Item Description

New Horizontal Tab Group Creates a new horizontal Tab Group.

New Vertical Tab Group Creates a new vertical Tab Group.

Move to Previous Tab Group Move to Previous Tab Group.

Move to Next Tab Group Move to Next Tab Group.

Auto Hide All Sets all Tool Windows to the Auto Hide setting.

Close All Documents Closes all open Document Windows.

Help Menu

The Help menu contains the following commands:

Menu Item Description

PSoC Creator Help
Topics

Opens this Help to the Welcome topic.

Document Manager Opens the Document Manager to access various Cypress documents. If Cypress Document Manager
is not installed, this opens a link on the Cypress web site to learn more about it and download it.

System Reference
Guides

Opens an HTML page containing information and links to various system-wide and design-wide
Components.

Update Manager Launches the Cypress Update Manager to check for and install program updates.

PSoC Creator
Training

Opens the Cypress PSoC Creator Training web page.

Cypress Dev
Community

Open the Cypress Development Community web page.

Documentation > • Quick Start Guide - Opens the PSoC Creator Quick Start document.

• PSoC Creator User Guide

• Opens the Keyboard Shortcuts Help topic.

• Release Notes - Opens the Release Notes document.

• Known Problems & Solutions - Opens a Cypress web page to access the Known Problems and
Solutions document.

• Device Datasheets - Opens a Cypress web page to access PSoC device datasheets.

• PSoC Technical Reference Manuals - Opens a Cypress web page to access PSoC TRM
documents.

• Japanese
Documentation >

• Component Datasheets - Opens a web page to translated copies of
various Component datasheets.

• Chinese
Documentation >

• Component Datasheets - Opens a web page to translated copies of
various Component datasheets.

• PSoC Creator User Guide (Chinese)

• Component Author Guide

• Peripheral Driver Library - Opens the documentation for the appropriate PDL version for your
project, based on the path set in the Options Dialog.

• Datapath Configure Tool User Guide

• UDB Editor Guide

• Customizer API Reference Guide

http://www.cypress.com/documentation/other-resources/psoc-creator-user-guide
http://www.cypress.com/documentation/other-resources/psoc-creator-user-guide

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 106

Menu Item Description

• Warp Verilog Reference Guide

• Tuner API Reference Guide

• GCC Documentation

• Keil

Register > • PSoC Creator

• Keil

Support > • Knowledge Base - Opens the Cypress Knowledge Base web page.

• Create a Support Case - Opens the Cypress support web page to create a new support case.

• View Your Support Cases - Opens the Cypress support web page to your home page.

Order Samples Opens the Cypress Store web page to order samples, kits, cables, etc.

Contact Us Opens Help topic to provide ways to contact Cypress.

About Opens the About PSoC Creator dialog, which provides build and plug-in information.

Standard Toolbar

The PSoC Creator standard toolbar contains the following commands:

◼ New Project/Workspace

◼ New File

◼ Open Project/Workspace

◼ Open File

◼ Save

◼ Save All

◼ Print

◼ Print Preview

◼ Cut

◼ Copy

◼ Paste

◼ Delete

◼ Undo

◼ Redo

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 107

Keyboard Shortcuts

The following table lists many of the various keyboard shortcuts available in PSoC Creator.

Location Command Shortcut

File Menu Open [Ctrl] + [O]

Close active file [Ctrl] + [F4]

Save [Ctrl] + [S]

Save All [Ctrl] + [Shift] + [s]

Print [Ctrl] + [P]

Edit Menu Undo [Ctrl] + [Z]

Redo [Ctrl] + [Y]

Cut [Ctrl] + [X]

Copy [Ctrl] + [C]

Paste [Ctrl] + [V]

Delete [Del]

Select All [Ctrl] + [A]

Find [Ctrl] + [F]

Replace [Ctrl] + [H]

Find in Files [Ctrl] + [Shift] + [F]

Replace in Files [Ctrl] + [Shift] + [H]

Go To [Ctrl] + [G]

Make Uppercase [Ctrl] + [Shift] + [U]

Make Lowercase [Ctrl] + [U]

View White Space [Ctrl] + [E], [S]

Incremental Search [Ctrl] + [I]

Comment Selection [Ctrl] + [E], [C]

Uncomment Selection [Ctrl] + [E], [U]

Toggle Bookmark [Ctrl] + [K], [Ctrl] + [K]

Toggle All Outlining [Ctrl] + [M], [L]

Toggle Outlining Expansion [Ctrl] + [M], [M]

Start Automatic Outlining [Ctrl] + [M], [O]

Stop Automatic Outlining [Ctrl] + [M], [P]

View Menu Zoom in [Ctrl] + [+]

Zoom out [Ctrl] + [–]

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 108

Location Command Shortcut

Debug Menu Breakpoints [Ctrl] + [D], [B]

Output [Ctrl] + [D], [O]

Watch 1 [Ctrl] + [D], [W]

Watch 2 [Ctrl] + [Alt] + [W], [2]

Watch 3 [Ctrl] + [Alt] + [W], [3]

Watch 4 [Ctrl] + [Alt] + [W], [4]

Locals [Ctrl] + [D], [L]

Components [Ctrl] + [D], [P]

Call Stack [Ctrl] + [D], [C]

Memory 1 [Ctrl] + [D], [M]

Memory 2 [Ctrl] + [Alt] + [M], [2]

Memory 3 [Ctrl] + [Alt] + [M], [3]

Memory 4 [Ctrl] + [Alt] + [M], [4]

Disassembly [Ctrl] + [Alt], [D]

Registers [Ctrl] + [D], [R]

Program [Ctrl] + [F5]

Execute Code (Debug) / Resume Execution [F5]

Debug without Programming [Alt] + [F5]

Halt Execution [Ctrl] + [Alt] + [Break]

Stop Debugging [Shift] + [F5]

Rebuild and Run [Ctrl] + [Shift] + [F5]

Reset [Shift] + [Alt] + [F5]

Step Into [F11]

Step Over [F10]

Step Out [Shift] + [F11]

Toggle Breakpoint [F9]

Address Breakpoint [Ctrl] + [D], [A]

File Line Breakpoint [Ctrl] + [D], [F]

Function Breakpoint [Ctrl] + [D], [U]

Variable Watchpoint [Ctrl] + [D], [V]

Memory Watchpoint [Ctrl] + [D], [E]

Delete all breakpoints [Ctrl] + [Shift] + F9

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 109

Location Command Shortcut

Build Menu Build All Projects [F6]

Build Active Project [Shift] + [F6]

Cancel Build [Ctrl] + [Break]

Compile File [Ctrl] + [F6]

Help Menu Help Topics [F1]

Design Elements Palette Cancel current operation [Esc]

Rectangle Tool [r]

Ellipse Tool [e]

Line Tool [l]

Text Tool [t]

Arc Tool [c]

Image Tool [m]

Wire Tool [w]

Sheet Connector [s]

Digital Input [i]

Digital Output [o]

Digital Inout [b]

Analog Terminal [a]

External Terminal [x]

Sheet / Page Move item 1 grid unit or Scroll 1 grid unit [Up], [Down], [Left], or [Right] *

Move selected shape 1 point [Shift] + [Up], [Down], [Left], or [Right]

Move selected shapes off grid ** [Shift] + Left Click (hold) + Drag

Disable/enable rubber-banding [Ctrl] + Left Click (hold) on one or more objects +
Drag, or

[Ctrl] + [Up], [Down], [Left], or [Right]

Zoom to selection [Ctrl] + Left Click (hold) on white space + Drag

Select multiple items [Ctrl] + Left Click (successive actions)

Pan [Alt] + Left Click + Drag

Scroll up / down Mouse Wheel Up / Down

Zoom in / out [Ctrl] + Mouse Wheel Up / Down

Scroll left / right [Shift] + Mouse Wheel Up / Down

Large scroll up / down [Page Up] / [Page Down]

Large scroll left / right [Shift] + [Page Up] / [Page Down]

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 110

Location Command Shortcut

Navigation Switch between schematic pages. [Ctrl] + [F6] (Use [Shift] for reverse direction.)

Switch between open project files or open
tabbed documents.

[Ctrl] + [Tab] (Use [Shift] for reverse direction.)

Close a tabbed document. [Ctrl] + [w]

Go back to previous cursor location in Code
Editor.

[Ctrl] + [-] (Use [Shift] for reverse direction.)

Code Editor Autocomplete [Ctrl] + [Space]

Find References [Ctrl] + [Shift] + [R]

Go To Declaration [F12]

Go To Definition [Ctrl] + [F12]

* If items are selected, using the arrow keys moves items 1 grid unit in the specified direction. If sheet/page is
selected, using the arrow keys scrolls instead.

** Components, wires, and other design-specific objects will always snap to grip. Other shapes not part of the
actual design can be moved freely.

See Also:

◼ File Menu

◼ Edit Menu

◼ Debugger Menu Commands

◼ Build Menu

◼ Design Elements Palette

◼ Customize Dialog

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 111

Dialogs

Component Installer

The Component Installer dialog is used to install new and updated Components from the Cypress web site. It
shows all new Components and updated Component versions available online. You can use the pull-down menu to
filter by device family/series, as well as a search box to further limit the Components displayed.

To Open the Dialog:

Select Find new Components from the Tools menu or click the Find new Components button on the
Component Catalog.

If you have an open project, the default filter will be derived from the selected device of the active project. If there is
no open project, the filter will default to "All."

Use the Show only newer check box to limit the Components shown to only those newer than what you already
have installed.

To Select a Component:

You can select one or more Components through the tri-state check box.

If you select a Component, the description, image, and datasheet link are downloaded from the web content store
and shown on the right hand side of dialog.

To Install a Component:

After selecting one or more Components, click the Install Checked Components button.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 112

A download progress bar will display, indicating how many parcel files need to be downloaded in order to satisfy
required dependencies. Parcel files will be on the order of 10 MB or less (e.g., BLE_v3_0 compresses to 8 MB), so
the progress bar will simply reflect the number of parcel files downloaded.

◼ While the download/installation is in progress, the button will display as Cancel to cancel the process.

◼ When the download/installation is completed, the button will display as OK to close the dialog.

◼ If there were errors during the download process, they appear in the output window.

See Also:

◼ Tools Menu

◼ Component Catalog

Component Update

The Component Update Tool dialog allows you to update versions of Components in your designs.

Under the New Version column, bold items indicate Components that will have their version updated. By default,
PSoC Creator selects the most current version of a Component (inlcuding online Components) to be updated.

After a Component update operation has been completed, the tool generates a ComponentUpdateLog.txt file,
which provides details of the update. This file is stored as in the corresponding project folder.

To Open the Dialog:

1. Open a PSoC Creator design project with one or more Components.

2. Select Update Components from the Project menu.

Notes

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 113

□ If newer versions of Components are available (including online) in a design, an icon will be added to
the status bar as follows:

Click the icon to open the Component Update Tool dialog.

□ You can also right-click on the project in the Source tab of the Workspace Explorer and select Update
Components.

Component Version States:

The Component Update Tool reports the state of various Component versions, under the Current Version and
New Version columns.

◼ Obsolete – An obsolete Component version should updated to a newer version. PSoC Creator will display a
warning or error about this Component version in the Notice List Window.

◼ Prototype – A pilot Component version is typically a working example only. It is not characterized and not
regression tested. PSoC Creator will most often display a note about this Component version in the Notice List
Window. In some cases, it will display a warning.

◼ Incompatible – An incompatible Component version means that the selected Component and version is not
compatible with the selected device for your design. PSoC Creator will display a warning or error about this
Component version in the Notice List Window.

◼ Downloadable – This version of the Component is available online. Selecting it will cause it to be downloaded
and installed as a part of the update process.

To View Datasheets:

Click the Component link in the Name column at the top of each set of Component instances to display the latest
version of the Component's datasheet.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 114

To Update Components:

The Components to be updated are selected automatically and shown in bold under the New Version column.

1. As desired, pull down the menu under New Version for each Component and select the version you wish to
use. You might use this to downgrade a Component to a previous version, for example.

Note If desired, use the menu next to New Version to set all Components to the latest version (default) or to
the current version.

2. Click Next.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 115

3. Review the information on the Review Pending Updates step.

4. The Create workspace archive before updating check box will create an archive of your project. Leave
selected or deselect to skip the archiving step.

5. Click Finish to update the Component(s) or click Cancel to cancel.

See Also:

◼ Component/Instance

◼ Workspace Explorer

◼ Notice List Window

◼ Environment Options

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 116

Customize

The Customize dialog is used to display various toolbars, as well as customize which commands appear on
toolbars.

This dialog has three tabs:

◼ Toolbars

◼ Commands

◼ Keyboard – This tab and its functionality should not be used.

To Open this Dialog:

Right-click in the PSoC Creator menu/toolbar area and select Customize.

Toolbars Tab

The Toolbars tab allows you to create, rename, remove, and reset toolbars. It displays the toolbars available and
any toolbars you create. When a toolbar is displayed, a check mark appears to the left of it in this dialog box.

◼ New – Displays the New Toolbar dialog box, which allows you to create and name a custom toolbar.

◼ Rename – Displays the Rename Toolbar dialog box, which allows you to change the name of a custom toolbar
only.

◼ Delete – Deletes the custom toolbar selected in the Toolbars list.

◼ Reset – Removes any changes to the predefined toolbar selected in the Toolbars list and resets it to its original
state. Available only if you select a built-in toolbar.

Note You can only delete and rename toolbars that you created.

Commands Tab

The Commands tab allows you to add and remove commands on toolbars and menus.

◼ Categories – Specifies the set of commands that are displayed in the Commands list box. The categories of
commands are based on menu titles provided by the tools and designers that the environment is currently
supporting. This list of titles is dynamic so that the order of categories and the menu titles change, depending

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 117

on the tools and the designer, as well as any customizations made to them. Therefore, it is possible for two
menus from different designers to have the same name, so the same title can appear twice but offer different
command sets.

◼ Commands – Displays the commands and command images based on the category you selected. You can
drag a command onto the toolbar you want to customize.

◼ Modify Selection – Displays a list of commands you can use to customize the display of the button on the
toolbar. For example, you can change the image or accelerator keys, as well as specify whether to display text
instead of an image for the command. This button is available after you select a command button on a toolbar
you want to customize.

See Also:

◼ Framework Description

◼ Standard Toolbar

Dependencies

The Dependencies dialog is used to show and select one or more user-level project dependency. The order of the
dependencies determines the order that PSoC Creator will use to search for Components and code.

To Open the Dialog:

Select Dependencies... from the Project menu.

Projects:

This pull down allows you to select the project for which you want to include a dependency. This only applies if
there are multiple projects in your workspace.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 118

System Dependencies:

This area shows the system-level dependencies for your project.

For each dependency there are two check boxes: Components and Code. Components determines whether
PSoC Creator searches the project for Components to include in the Component Catalog. Code determines
whether a C static library is linked in to the project.

User Dependencies:

This area is where you can add/remove other dependencies to your project. It contains four buttons: Add, Remove,
Move Up and Move Down. This section also contains Components and Code check boxes described under
System Dependencies.

Note If there were any default dependencies added to the Project Management Options dialog under Default
Dependencies, those dependencies will be shown in this area for projects created after the dependencies were
added.

Subdependencies:

If you have multiple projects in your workspace, there are cases where one or more projects use Components
defined in another project in the same workspace. In this case, if you select the Components check box next to the
project where the Component is defined, the Subdependencies dialog will display.

Project dependencies are a list. For example, suppose a workspace has "Project A" that depends solely on "Project
B" that depends solely on "Project C."

◼ Project A will not use Components or code from Project C, unless Project A has its own direct dependency on
Project C.

◼ If modifying dependencies for Project A, selecting Subdependencies for Project B would show Project C.

◼ If adding a new dependency for Project A, the Subdependencies dialog makes it easy to add any other
dependencies that may be necessary.

◼ If you do not add Project B Subdependencies for Project A may cause DRC errors or link errors in Project A.

Build Order Tab:

The Build Order tab is a read-only list of the order in which your projects will build.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 119

See Also:

◼ Basic Hierarchical Design

◼ Project Management Options

Device Selector

Use the Device Selector dialog to choose which device to use in your design.

The dialog provides a list of available devices, as well as various characteristics for each device. Using the dialog,
you can:

◼ change the selection at any time during the design process

◼ customize how/what data is displayed for the devices

◼ filter which columns should be displayed/hidden

Notes

◼ The title bar of the dialog displays the name of the project that the device is being set for and the name of the
currently selected device.

◼ The Device Selector layout is saved on a per project basis. When you re-open the Device Selector for a
particular project it will retain all the information from the previous session.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 120

◼ The Device Selector allows for targeting a project to a specific Silicon Revision. This will cause changes in the
generated code such that it can only be programmed on a target device that has a matching Silicon Revision.

To Open the Dialog:

Select the design project for which you want to change the selected device in the Workspace Explorer and do one
of the following:

◼ Select Project > Device Selector…, or

◼ Right-click on the project and select Device Selector…

Note You can also open the Device Selector from the New Project dialog Device pull down menu when creating a
new design project. The major difference is that when opening the Device Selector for a new design, none of Auto-
Select features are applicable and you will only see devices for the project type you have selected.

To Select a Device:

To select a device, do one of the following:

◼ Double-click a device row in the device table, or

◼ Click a device row and click OK.

To quickly select the default device for a specific architecture, right-click anywhere in the device selector table area
and select Select Default Device. Then pick your desired architecture.

To Sort a Device Category:

You can sort by any column in ascending or descending order by clicking on the header for that column. Clicking
again will toggle the sort direction. When a column has a sort applied to it, an arrow will be displayed under the text
in the column header.

By default, the part number column in the device selector has the sort applied to it. To re-sort on the part number,
right-click anywhere in the device selector table area, select Sort by Part Number, and pick your desired sort
direction. This menu also provides a way to automatically scroll to whatever device is currently selected.

To View Device Datasheet:

Click View Datasheet.

This opens a web page to the selected device's datasheet.

To Show/Hide Columns:

Click Hide/Show Columns.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 121

This is used to hide/show in the device table. This opens Display Columns dialog that lists all the available columns.

You can then select/unselect columns to alter what is displayed in the device table.

Note These changes are made live as you change the state of the check boxes. Columns that have filters applied
cannot be hidden. They are disabled in the dialog and are followed by the text “- Filtered” so you know why they
cannot be hidden.

Status information displays above the device table, showing how many columns are hidden. If no columns are
hidden, no status information is provided.

To Filter the Device Table:

Each column in the Device Selector has a drop-down button used for filtering on the column. When pressed, a
drop-down window displays a list of check boxes, one for each of the different values possible in that column. You
can unselect as many of the values as desired, removing devices with those values from the set of displayed
devices. These changes are not applied to the device table until you click off the window or press the [Enter] key
(pressing [Esc] will close the window without applying any of the changes). By default all values are checked
meaning that no filtering has been done.

When filtering has been applied on a column, the column header (and the accent color on the button) changes to
make it very obvious which columns have filters applied. The button also displays the value that has been left “on”.
If more than one value has been left “on,” only the first value will be displayed on the button. The value will be
followed by “…” indicating that more values are being displayed. In this case hovering the mouse over the button
will produce a tool tip that displays all the values that are currently “on”.

There is a status bar just below the device table that shows how many devices are currently being displayed (i.e.
how many devices passed all the filters) versus how many devices exist. There is also a link here that clears all the
filters from the table making all the devices visible again.

To Reset to Defaults:

Click Reset to Defaults.

This resets all the settings back to their defaults (removes filters, re-orders columns, resets which columns are
displayed, etc.).

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 122

See Also:

◼ Workspace Explorer

◼ Creating a New Project

Device Update Installer

The Device Update Installer dialog is used to download and install new device support available on the Cypress
web page.

To Open the Dialog:

Select Find new Devices from the Tools menu.

If no new device support is available, a "No new devices are available." message displays.

If new device support is available, the following dialog will display.

To Install/Download a Device:

Select one or more devices and click the Install button.

Once the download is completed, click OK to close the dialog.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 123

A pop up message will display to indicate that PSoC Creator needs to restart.

Click Yes to restart; click No to cancel the installation.

Enumeration Types

The Enumeration Types dialog allows you to create and edit enumerations (or user-defined types) for your
Components. This dialog is used in conjunction with defining parameters for a Component. The process of creating
Components can be complex. This topic is provided as a help if you press [F1] for this dialog. For more in depth
discussion regarding creating Components, refer to the Component Author Guide.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 124

A Component can contain multiple types but each type name must be unique and each key in the types must be
unique across all other types in that Component. The types defined for each Component in a given project are
aggregated on the project (the project type cache) and the project type caches from all projects on a design's
search path are aggregated into a design type cache.

◼ Internal to the symbol, the type and the type keys are accessible by their "short name."

◼ Outside of the symbol, the type and keys are identified using the "long name," which is the Component name
followed by the actual type or key name (using "__" to separate the two).

When evaluating a type or key for an expression, the evaluation system first looks in the enclosing symbol for the
identifier. If it is not found there, the system queries the design type cache. If the design type cache does not
recognize the identifier, it is reported as an unknown identifier.

To Open the Dialog:

Click the Types... button on the Parameters Definition dialog.

To Add an Enumeration Type:

1. Enter a name at the bottom of the 'Enum Set' table (where it says 'Enter type name…').

2. In the Enum Item table, click in the empty row under Enum Item Name and type a name for the 1st name/value
pair of the enumerated type; type a value under Value or accept the default.

3. Optionally, enter a string in Display Name that will display in the Component's Configure dialog pull down
menu for that parameter.

4. Enter as many enum sets as needed and click OK to close the Enumeration Types dialog..

To Delete an Enumeration Type:

Click Delete next to the item to delete.

See Also:

◼ Symbol Editor

◼ Parameters Definition dialog

◼ Component Author Guide

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 125

Family Migration Information

The Family Migration Information dialog displays when you try to change a project from one device family to
another family and vice versa. The dialog warns you that the device change being made is likely to require manual
edits to the design, or that the migration is not supported.

Note This dialog text will change depending the devices involved. Here are a couple examples.

To Open this Dialog:

This dialog opens when you try to change your project to or from a PSoC 4 device using the Device Selector.

To Use this Dialog:

Click OK to close the dialog and proceed with changing the device.

Click Cancel to close the dialog and leave the project device unchanged.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 126

See Also:

◼ Device Selector

◼ Options Dialog

Find Code Example

The Find Code Example dialog allows you to search for and open code examples installed on disk with PSoC
Creator, as well as download and install code examples from the Cypress web site. Code examples show how
various Components can be configured, and they include sample code to provide a better understanding of how a
Component can be used.

Most code examples have a description document that provides setup and configuration information. This
document is displayed under the Documentation tab when you select a project from the list. Also available is
example code located under the Sample Code tab.

Code examples shown in the list will have different indicators, as follows:

◼ Install – These are code examples that are online only and need to be installed before they can be used.

◼ Update – These are code examples that have newer versions online than the code example already installed
on disk.

◼ None – These are code examples installed on disk with no updates available.

To Open the Find Code Example Dialog:

All Examples

To open the dialog with all code examples available, select Find Code Example... on the Start page, or select
Code Example... under the File menu.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 127

Component-Specific Examples

To open the dialog with a list of code examples associated with a corresponding Component, right-click on a
Component in the Component Catalog or on the design canvas, and select Find Code Example...

To Install/Update a Code Example:

Click the Install or Update button, as appropriate.

A download progress dialog displays. When completed, click OK to close the download progress dialog. This will
also update the status of applicable code examples in the Find Code Example dialog.

Also, if a new/updated code example includes new or updated versions of Components than those already installed
on disk, then the new Components and Component versions will also be installed.

To Select a Code Example:

1. As needed, choose filters under Device Family or Filter by to narrow the list of available projects.

□ Select the Device Family for the project. For example, All, PSoC 3, PSoC 4000, PSoC 4200 BLE,
PSoC 5LP, etc.

□ If desired, also select a keyword from the Filter by pull-down menu or type the project name or other
words. This could be the name of a Component or different keywords used by code example
developers to distinguish projects.

2. Select a project or workspace from the list matching the given filtering criteria.

Note It is possible that multiple projects will be contained in an example workspace. If any of the projects in a
workspace matches the filtering criteria, the workspace and all of its projects will be shown.

3. View the documentation and/or code for the project by clicking the appropriate tab, if desired.

4. Click either Create Project or Create Workspace, as appropriate. The New Project wizard opens to complete
the project/workspace creation process.

Note If an online only code example has not been installed, an error message will display indicating that you
must install it before it can be created. If a code example update has not been installed, the previously installed
version of the code example

See Also:

◼ Creating a New Project

◼ Workspace/Project

◼ Component/Instance

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 128

Generate Verilog

The Generate Verilog dialog allows you to choose the architecture, family, and/or device for the Verilog file being
generated for your Component symbol. This dialog is used as part of creating a Component. For more in depth
discussion regarding creating Components, refer to the Component Author Guide.

To Open this Dialog:

This dialog opens automatically when you select the Generate Verilog command from the Symbol canvas context
menu.

To Choose Architecture/Family/Device:

The Target options may be used to specify a particular architecture, family, and/or device to which the Verilog file
applies.

◼ Leave the default setting Generic Device selected to allow the Verilog file to apply to all devices. Deselect the
check box to enable the Family, Series, and Device pull down menus.

◼ Choose a Family to create the Verilog file in a subfolder for a family.

◼ Choose a device Series to create the Verilog file in a subfolder for a series of devices.

◼ Choose a specific Device part number to create the Verilog file in a subfolder for a specific device.

See Also:

◼ Component Author Guide

◼ Symbol Editor Context Menus

◼ Adding a Component Item

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 129

Import Component

The Import Component dialog is used to import a Component from another project. It is also used to import one or
more Components from a Component archive file.

Note Imported Components retain all of the symbol and Component properties of the original Component. This
includes Component Catalog Placement. If there are duplicate Components from different Dependencies in your
project, the Component Catalog will display the Component from the dependency with the highest precedence.

The dialog has the following options:

◼ Import from project/library – Used to choose the project/library that contains the Component to import.

◼ Source Component – When importing from a project/library, this option is used to specify which Component
from the project/library to import.

◼ Import from archive – Used to select the Component archive that contains the Component(s) to import. For
more information, see Exporting a Component. All Components in the archive file will be imported.

◼ Target Project – Used to select the specific project for which the Component will be imported.

To Open this Dialog:

1. Select the Components tab in the Workspace Explorer.

2. Right-click on a project and select Import Component.

To Import a Component:

1. Select either Import from project/library or Import from archive.

□ If you selected Import from project/library, select the project that contains the Component to import.
If necessary, click the browse button [...] and navigate to the folder containing the Component to import.
In Source Component, select the Component to import from the project/library.

□ If you selected Import from archive, select the appropriate Component archive (.cycomp file). If
necessary, click the browse button [...] and navigate to the folder containing the Component archive.

2. In Target Project, select the project where the Component will be placed.

3. Click OK.

PSoC Creator adds the imported Component(s) to the selected project.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 130

See Also:

◼ Dependencies

◼ Component Catalog

◼ Defining Catalog Placement

◼ Exporting a Component

◼ Workspace Explorer

Merge Dialog

The Merge dialog displays when you try to enable a Disabled Schematic page and there are one or more
Component and/or wire instances that have the same name.

To use the dialog:

Select the instance in the New Name field, type a different name for the instance, and click OK.

Note Component instances must be renamed in order to resolve the name conflict. Some wire and signal instances
do not have to be renamed. The OK button will not be enabled until all mandatory conflicts have been resolved.

See Also:

Using Disabled Schematic Pages

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 131

Modified Files

The Modified Files dialog allows you to selectively save files when closing a project or workspace.

This dialog displays automatically if you attempt to close a file or workspace/project that needs to be saved.

To Use this Dialog:

◼ Click Yes to save the selected files.

◼ Click No to save none of the files.

◼ Click Cancel to close the dialog and leave the files open.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 132

Notice Details

The Notice Details dialog displays expanded information for messages in the Notice List window. The Notice Details
dialog will display the entire message, as well as additional information if available.

To Open this Dialog:

On the Notice List window, click the button next to the message or click the View Details button.

There is also a command available to view details if you right-click on a notice.

See Also:

◼ Notice List Window

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 133

Obsolete Device

The Obsolete Device dialog displays when you open a project with a device that is no longer in the Cypress device
catalog. This dialog suggests the next best alternative for your device, and provides a link to the suggested device
datasheet for more information.

This dialog provides you with three options:

◼ Click OK to open your project with the suggested device.

◼ Click choose another replacement to open the Device Selector and choose a different device.

◼ Click Cancel to open the Workspace with the project unloaded.

Note The project will also be unloaded if you close the Device Selector without selecting a device.

If you reload the unloaded project, PSoC Creator will select the default device for your project. You can use the
Device Selector to change it, if needed.

See Also:

◼ Device Selector

◼ Opening an Existing Project

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 134

Options Dialog

The Options dialog allows you to specify various settings for PSoC Creator, such as where projects are stored or
the color of wires.

The dialog is divided into the following categories:

◼ Project Management (this topic)

◼ Design Entry

◼ Language Support

◼ Text Editor

◼ Program/Debug

◼ Environment

To Open the Options Dialog:

Select Options from the Tools menu.

To Restore Defaults:

Click Restore Defaults.

All options revert to the default configuration.

Project Management Options:

The Project Management category of the Options dialog is used to set various options for project management.

This category includes the following sections:

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 135

General:

The General area contains various project management options.

◼ Projects location – Used to specify the default location to save your projects.

◼ My Template projects location – Used to specify the default location to save your My Template projects.

◼ PDL v2 (FM0+ devices) location – Used to specify the default location where projects will look for the
Peripheral Driver Library (PDL) version 2, for FM0+ devices. You can also specify a custom PDL path per
project on the Peripheral Driver Library Build Settings dialog.

◼ PDL v3 (PSoC 6 devices) location – Used to specify the default location where projects will look for the PDL
version 3 for PSoC 6 devices. You can also specify a custom PDL path per project on the Peripheral Driver
Library Build Settings dialog.

◼ Always show the Error List window if a build has errors – yes (default) or no.

◼ Always display the workspace in the Workspace Explorer – yes (default) or no.

◼ Display the Output window when a build starts – yes (default) or no.

◼ Reload open documents when a workspace is opened – yes (default) or no.

◼ Reload the last workspace on startup – yes or no (default).

◼ Auto-Backup Designs – yes (default) or no. If this option is selected, when you open designs created with
previous versions of PSoC Creator, the older designs will be backed up to an archive (located in [Workspace
Folder]/Backup). This backup “copy” will contain the version of the tool that was last used to save it (that is, the
older version it can be opened with) in the file name.

◼ Don't show Keil registration ... – yes or no (default). If selected, the Keil Compiler Registration dialog will not
display every time you start PSoC Creator.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 136

8051 Toolchains:

This section is used to set the default 8051 toolchain.

This option also allows you to specify paths to the binaries for each specific toolchain.

◼ DP8051 Keil Generic – The default install location is C:\Keil\C51\BIN\

Example files that should be in the selected folder: A51.EXE, C51.EXE

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 137

ARM Toolchains:

This section is used to set the default ARM toolchain.

This option also allows you to specify paths to the binaries for each specific toolchain.

◼ ARM GCC Generic – There is no default install location. It can be in whatever folder you extract the files.

Example files that should be in the selected folder: arm-none-eabi-addr2line.exe, arm-none-eabi.ar.exe

◼ ARM MDK Generic – The default install location is C:\Keil\ARM\BIN40\

Example files that should be in the selected folder: armar.exe, armasm.exe

Note Some toolchains require environment variables to find its bin, include, and library paths. These variables are
set by the toolchain installer. You may have to restart PSoC Creator in order to use the new environment variables.

Default Dependencies:

This option allows you to specify default libraries that appear as user dependencies on the Dependencies dialog for
all newly created projects. Default dependencies apply to all new projects on a per user basis, so they will be the
included for all your new projects.

Note Projects created with PSoC Creator 1.0 and initially opened in the current version of PSoC Creator will be
updated to include all default dependencies defined at that time. Existing projects for the current version of PSoC
Creator will not be updated to include any default dependencies added in the future.

This area contains four buttons: Add, Remove, Move Up and Move Down. For each dependency there are two
check boxes: Components and Code to specify whether or not there is a dependency on the search path, code,
both, or neither.

See Also:

◼ Keil Compiler

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 138

◼ Dependencies

◼ Toolchain Documentation

Design Entry Options

The Design Entry category of the Options dialog is used to set various options for the design entry tools.

This category includes the following sections:

General:

The General section contains numerous fields to specify preferences for colors, widths, sizes, and fonts for most of
the objects in the design entry tools. This section is divided as follows:

◼ Page – settings for the display of the canvas, including grid type and color.

◼ Terminal – settings for terminals including colors and fonts.

◼ Text – settings for labels including whether to display expressions and the color or owner lines.

◼ Wire – settings for wires including colors, widths, and fonts. There is also a setting for rubber-banding. When
this option is turned on, wires will automatically be redrawn when you move objects. If rubber-banding is turned
off, wires will not be redrawn and connections will be broken. Press the [Ctrl] key while moving objects to
temporarily disable or enable rubber-banding, respectively.

Sheet Templates:

This section allows you to specify locations where PSoC Creator will look for sheet template files to be used with
design entry tools. See Sheet Template Editor for information about creating sheet templates.

Use the Add button to add more paths to locations for sheet templates; use the Remove button to remove paths.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 139

Component Catalog:

This section contains Component options:

◼ Show Hidden Components – Selecting this check box displays all the hidden Components in the Component
Catalog, including primitives. Primitives are basic Components that are used as building blocks in the typical
Components found in the catalog.

◼ Enable Param Edit Views – Selecting this check box allows you to view the Expression View in each
Component's Configure dialog by right-clicking on the different tabs in that dialog.

Warning Switching to the Expression View is an advanced feature. It requires a thorough knowledge of the
valid parameter settings for the Component. Using this view makes it possible to create combinations of
parameters that are not valid. Therefore, you may need to cancel any changes and restart the process if you
cannot find valid parameters.

◼ Remember Dialog Sizes – Selecting this check box makes it so that Components’ Configure dialogs will
save/restore their size on a per Component basis. Unchecking this box will cause the dialogs to open as their
default size instead.

Note If the saved size is larger than the current screen, the size will be adjusted to fit the screen.

◼ Reset Sizes – Clicking this button will cause all the currently saved dialog sizes to be reset to the default size
for their Components. This operation cannot be undone.

Component Security:

Allows you to add and remove paths to allowed third party customizers that can be used within PSoC Creator.
PSoC Creator will generate errors for third party customizers not included in this section. When you try to open an
external project, PSoC Creator displays the following:

“Project XXX contains Components that include special code that runs on your machine. Do you trust the
source of the project and wish to use the projects Components.”

If you select Yes, then the path of the project is added to the relevant setting. After this, whenever you open this
particular project, no messages will be shown and the project will load and build normally.

If you select No, then the project will load with an error:

“Component YYY is not available. Component Security is disabled for the project XXX. If you trust the author of
the project and wish to allow this Component to run code on your computer during the design process, select
Tools > Options > Design Entry > Component Security and add the project folder to the approved list.”

After this, whenever you open this project it will show this error until you add the path.

See Also:

◼ Options Dialog

◼ Using Design Entry Tools

◼ Sheet Template Editor

◼ Component Catalog

◼ Configure dialog

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 140

Language Support Options

The Language Support section of the Options dialog contains settings for using an installed datasheet language
pack.

General Options:

The following options are available under the General (default) section:

Datasheet Language

Specify whether to Use Locale or to Force Language. If a datasheet language pack is installed, the Force
Language option will enable a pull-down menu with different languages to select.

When opening a datasheet, if the specific language and version is not available, the Select Datasheet dialog will
display to select an appropriate datasheet.

See Also:

◼ Options Dialog

◼ Select Datasheet

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 141

Text Editor Options

The Text Editor category of the Options dialog is used to set various options for the code editor.

This category includes the following sections:

◼ General

◼ Inline Diagonstics and Autocomplete

◼ Fonts and Colors

◼ Find and Replace

General:

This section provides options to change various editor behaviors.

Lines/Columns

◼ Show Line Numbers – This check box allows you to control whether or not to display the line numbers.

◼ Highlight Current Line – This check box allows you to enable and disable the current line indicator, which
shades the current line.

◼ Enable Column Guide – This check box allows you to enable the column length guide. If enabled, you can
specify the column length in characters.

Line Modification Colors

These options allow you to change the color shown in the margins for Saved Changes and Unsaved Changes.

Click the colored box to display the Color selection dialog.

Tab size

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 142

The Tab Size field allows you to specify the tab length in characters.

◼ If you enable the Soft Tabs feature and then press the [Tab] key, the text editor uses the specified number of
spaces instead of a tab key stroke.

Note Turning the Soft Tabs feature on or off does not affect previously inserted tabs.

Inline Diagnostics and Autocomplete:

This section provides options to change settings for inline diagnostics and autocomplete:

Enable semantic parsing

This controls whether the advanced editor features such as autocomplete, inline diagnostics, Go To definition, and
the code explorer tool window are enabled.

◼ Enable inline diagnostics – If the Enable semantic parsing check box is selected, this check box is enabled
to turn on and off the inline diagnostic feature.

◼ Enable autocomplete – If the Enable semantic parsing check box above is selected, this check box is
enabled to turn on and off the Autocomplete feature.

□ Show completion results automatically – If the Enable autocomplete check box is selected, this
check box is enabled to show the completion results. If checked, items will be shown; otherwise, they
will won't.

□ Sort alphabetically – If the Enable autocomplete check box is selected, this check box is enabled to
turn on and off the sorting mechanism for autocomplete. If checked, items will be arranged
alphabetically; otherwise, they will be arranged in order of anticipated value.

□ Filter unmatched items – This option causes non-matching strings to be removed from the popup. It
causes the set of choices to be reduced as you types. By default, this option is enabled.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 143

□ If the Filter unmatched items check box is enabled, the Match text anywhere in completion check
box becomes available to all the search to return matches in the middle of strings; not just from the
beginning. For example, the string “PWM” will return matches for “PWM_1” and “MyPWM”. By default,
this option is enabled when the Filter unmatched items check box is enabled.

□ Macro Filtering – This option is used to specify that Macros (#define) can be omitted from the popup
list with the following options:

− Show all (can be slow)

− Show all (except system defines) (default)

− Show macro-functions only

− Show none

Note These options apply a filter to what macros are included in the auto-complete window for the All
and Macros only displays. You can still toggle between All, Macros only, and Non-macros by pressing
[Ctrl] + [Space].

□ Tab behavior – This option is used to allow how the [Tab] key is used while the popup is displayed, as
follows:

− Accept autocomplete (default)

− Close autocomplete window

− Perform UNIX-style Tab-completion (The [Tab] key adds as many characters as possible to the
word being typed such that the result is still a match for the set of matches prior to the
completion.)

□ Minimum characters required for popup – This option is used to specify how many characters to
type before the autocomplete popup displays. The valid range is 1-10. The default value is 1.

Note When the popup is already open this option is ignored.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 144

Fonts and Colors:

This section provides options to change the various fonts and colors:

◼ Show settings for – Pull-down to select options for different types of files to use in the editor.

◼ Use defaults – This will restore the settings for the currently selected file type back to their original values
provided by PSoC Creator.

◼ Font – Pull-down to select a font type for the selected Display items.

◼ Size – Pull-down to select a font size for the selected Display items.

◼ Display items – List to select the various items in the editor that can be changed.

◼ Font style – Pull-down to select different styles for the font: bold, italic, strikeout, and underline.

◼ Item foreground/background – Pull-downs to select colors for the selected Display items and background.

□ Custom – Buttons to open custom color chooser.

Find and Replace:

◼ Display informational messages – Selecting this check box will display informational messages related to
Find & Replace in PSoC Creator.

◼ Automatically populate Find What ... – Selecting this check box populates the Find What field with the
highlighted word(s) in the Text Editor.

See Also:

◼ Options Dialog

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 145

◼ Code Editor

◼ Find Replace

Program/Debug Options

The Program/Debug section of the Options dialog contains various options for configuring the device, debugger,
MiniProg3, and kits.

General:

Under the General category, you can configure the following:

◼ Evaluate – Text box to specify the number of children retrieved at a time in the variable view.

◼ Default Radix – Pull down menu to specify the default Radix display in various windows.

◼ On Run/Reset, run to – Radio option to select the "run to" point: Reset Vector, Main, or First Breakpoint.

◼ Ask before deleting all breakpoints – Check box to indicate if PSoC Creator will ask you before deleting
breakpoints.

◼ Require source files to exactly match the original version – Check box to indicate if source files should
match the original version. This option will allow you to edit code while debugging.

Note Changes will not take affect until after you recompile.

◼ Disable Clear-On-Read – Allows the debugger to read the CLR registers without actually causing the data to
be cleared. This applies to PSoC 3 and PSoC 5LP devices only.

◼ Mask interrupts when stepping on ARM devices – This option masks interrupts from triggering while
stepping though code in the debugger. This prevents the debugger from unexpectedly stepping into interrupt
handler code. This applies to all devices except PSoC 3.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 146

◼ Automatically reset device after programming – After programming, automatically does a reset to cause
new program to execute.

◼ Automatically show disassembly if no source – Automatically opens the disassembly window if no source
code is found for current debug line.

◼ Allow debugging even if build failed – If the build failed, but the output from a previous build still exists,
provide a dialog box to allow starting the debugger with the old build.

Note When debugging an old build, the code being debugged may not match the source code in the editor.

Fonts and Colors:

Under the Fonts and Colors category, you can adjust the font type and size, as well as various colors and
properties on the different debugger windows available in PSoC Creator.

◼ Choose the window or control in the Show settings for pull-down menu. Click Use Defaults to reset the
settings to the default.

◼ Choose the Font type. (Bold font items indicate they are fixed-width fonts.)

◼ Choose the font Size.

◼ Under Display items, choose an item to change and either select a color from the Item foreground or Item
background pull-down menus, or click the associated Custom... button to create a custom color.

◼ Choose the Font Style to change the text format to bold, italic, strikeout, and/or underline, if applicable.

Device Recognition:

Device Recognition is used to configure PSoC Creator to recognize 3rd party devices. This is done so that the
Select Debug Target dialog can list correct information about devices that are attached to a computer.

Note that while this configuration allows PSoC Creator to recognize 3rd party devices, these devices cannot be
selected for debugging. One use of Device Configuration is to configure the size of the Instruction Register and
Data Register for 3rd party devices attached in a JTAG chain.

Note that Device Configuration can be accessed in two ways: from the Options dialog and from the Select Debug
Target dialog by right-clicking on a node.

Port Configuration:

This section is used to configure the appropriate port.

MiniProg3:

◼ Active Protocol – Selects the protocol used to communicate with the target device.

◼ Clock Speed – Selects the frequency at which the MiniProg3 attempts to communicate with the target device.
The selected speed should be no more then 1/3 of the Bus Clock speed of the target device. Additionally, while
slower speeds are possible for debugging, the speed should be at least 1 MHz to program the device. 6 MHz is
the highest recommended clock speed for PSoC devices.

◼ Power – Specifies the amount of voltage that the MiniProg3 will provide to the target device or whether power
is from an external source.

◼ Acquire Mode – Selects the mechanism used to reset the device so that debugging is possible.

◼ Connector – Selects which connector on the MiniProg3 to use for sending data.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 147

FX2LP-SWD (First Touch Kit 3 / First Touch Kit 5 / DVK3 / DVK5):

◼ Active Protocol – Displays the protocol used to communicate with the target device.

◼ Power – Specifies the amount of voltage that the MiniProg3 will provide to the target device or whether power
is from an external source.

◼ Acquire Mode – Selects the mechanism used to reset the device so that debugging is possible.

Touch Tuning Bridge:

◼ Active Protocol – Displays the protocol used to communicate with the target device.

◼ Power – Specifies the whether the voltage is from an internal or external source.

◼ Acquire Mode – Selects the mechanism used to reset the device so that debugging is possible.

DVKProg1:

◼ Power – Specifies the whether the voltage is from an internal or external source.

◼ Acquire Mode – Selects the mechanism used to reset the device so that debugging is possible.

KitProg:

◼ Power – Shows the options available on the board for selecting power. Not configurable.

◼ Acquire Mode – Shows the acquire mode supported by the board. Not configurable.

KitProg2:

◼ Power – Specifies the amount of voltage is supplied to the target device or whether power is provided from
another source.

◼ Acquire Mode – Shows the acquire mode supported by the board. Not configurable.

CMSIS-DAP:

◼ Power – Shows the options available on the board for selecting power. Not configurable.

◼ Acquire Mode – Shows the acquire mode supported by the board. Not configurable.

◼ Max Clock Speed – Shows the speed at which communication happens. Not configurable.

See Also:

◼ Options Dialog

◼ Using the Debugger

◼ Select Debug Target

◼ Device Configuration

◼ Debugger Windows

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 148

Environment Options

The Environment section of the Options dialog contains several settings to specify how things display in PSoC
Creator.

General Environment Options:

The following environment options are available under the General (default) section:

Detect when files are changed outside this environment

This check box specifies whether PSoC Creator will detect changes made outside of PSoC Creator. If checked, you
can also specify whether to Auto-load changes, if saved.

Show Start Page at Startup

This check box allows you show or hide the Start page at startup. If you do not show the Start page at startup, you
can open it from the View menu.

Select Editor Tab on Right-Click

If this check box is selected, the mouse right-click action on a document window tab selects that document for
display in addition to displaying a menu. If this check box is not selected, the right-click action only displays a menu.

Number of Recent Files

This text box allows you to specify the number of files shown under the Recent Files and Recent Projects items
under the File menu, as well as projects shown on the Start page.

External File Extensions

Use this field to enter file extensions which will open with other applications instead of PSoC Creator. Separate the
extensions using commas.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 149

See Also:

◼ Options Dialog

◼ File Menu

◼ View Menu

◼ Component Update

◼ Window Types

Print Preview

The Print Preview dialog allows you to preview a document before printing it.

The types of PSoC Creator documents you can preview include: schematics, symbols, source code files, and some
design-wide resources files.

To Open the Print Preview Dialog:

Click the File menu and select Print Preview.

To Use the Print Preview Dialog:

◼ Click Print to print the document.

◼ Use the Zoom pull-down menu to view the preview at difference sizes.

◼ For files with multiple pages, use the various page view options. Use the Page box to jump to a specific one
page view.

◼ Click Close to close the Print Preview dialog.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 150

Properties

The Properties dialog provides information about selected items in other windows, such as the Workspace Explorer,
Schematic Editor, Symbol Editor, and so on.

In many cases, you can change different values - or properties - of the selected items. In addition to project-level
properties, each file in a project has properties. These properties allow you to set various options at a file level.

Depending on how you opened this dialog, it may contain different categories of properties, such as:

◼ General – file type, path, name

◼ Document – create date, current user

◼ Schematic – page count, title

◼ Symbol – catalog placement, summary

◼ Build filters – Configurations, Cores, Processors, Toolchains

To Open the Dialog:

Right-click on an item in PSoC Creator (for example, design canvas or file), and select Properties.

See Also:

◼ Working with Text

◼ Defining Catalog Placement

◼ Assigning a Core in a Multi-Core Design

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 151

Reloading Files

If you work on PSoC Creator files outside the application, PSoC Creator -- when it regains focus -- will check if any
files that are open have been changed on disk. If any files have changed, PSoC Creator will display two possible
prompts, asking which of the files should be reloaded. If both types of documents exist, both prompts will be
displayed.

To stop PSoC Creator from attempting to reload files that have been modified outside of the application you can
uncheck the Detect when files are changed outside this environment option in Environment Options.

Reloading Modified Files:

If the files requiring reloading have unsaved changes made from within PSoC Creator, the Reload Modified Files
dialog will be displayed.

Any modified files that are reloaded will cause all unsaved changes to be lost.

◼ Check All – This option checks all the files specifying that they should all be reloaded.

◼ Uncheck All – This option unchecks all the files specifying that none of the files should be reloaded.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 152

Reloading Unmodified Files:

If the files requiring reloading have no unsaved changes made from within PSoC Creator, the Reload Files dialog
will be displayed.

From this dialog, the option to automatically reload unmodified files without prompting first can be set. If set to true
this dialog will no long be displayed.

Note The option can be also changed from the Environment Option: Auto load changes, if saved.

See Also:

◼ Modified Files

◼ Environment Options

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 153

Select Datasheet

The Select Datasheet dialog is used to select an appropriate datasheet to open. This dialog displays when you try
to open a datasheet, but the specific language and version of that datasheet is not available.

To Use the Dialog:

Select the appropriate datasheet to open and click OK.

See Also:

◼ Language Support Options

Select Sheet Template

The Select Sheet Template dialog is used to select the sheet template to use for your design.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 154

To Open the Dialog:

◼ For an existing project, right click on your design canvas and select Change Template.

Templates:

This area lists the available sheet templates to select for your design. Click on a template to select it.

Preview:

This area shows a preview of the selected template.

See Also:

◼ Schematic Editor

◼ Sheet Template Editor

Sheet Template Page Setup

The Sheet Template Page Setup dialog is used to specify various attributes for your sheet template. This is different
from the Windows Page Setup dialog, used for printing.

This dialog only displays when you create a new sheet template. See Sheet Template Editor for more information.

Paper:

Choose a paper size from the pull down menu, or specify custom Width and Height measurements in inches.

Orientation:

Specify Portrait or Landscape.

Margins:

Specify the Top, Bottom, Left, and Right margins in inches.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 155

See Also:

◼ Sheet Template Editor

Signal Name

The Signal Name dialog is used to name a signal.

A signal can have the following valid names:

◼ mywire_1 – base name only

◼ mywire_1[0] – base name with a bit index

◼ mywire_1[1:0] – base name with bus indices

◼ [0] – bit index only

◼ [1:0] – bus indices only

To Open the Dialog:

Open this dialog in two ways:

◼ For a wire with no label, double-click the wire, or right-click and select Edit Name and Width.

◼ For a wire with an existing label, double-click the wire label.

Use Computed Name and Width:

Select this check box to have PSoC Creator automatically specify the name and width; unselect to do it manually.

Specify Full Name:

1. To specify a name, you must first unselect the Use Computed Name and Width check box.

2. Then, select the Specify Full Name check box to enable the associated text box.

3. Use this text box to enter a base name for the signal.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 156

Indices:

Use this section to select one of the following index options. This section becomes available when you unselect the
Use Computed Name and Width check box.

◼ None – Select this option for no indices on the base name (e.g., my_wire). If you unselect the Specify Full
Name check box, then the None option is disabled.

◼ Bit – Select this option to set a bit index on the signal (e.g., [0]).

◼ Bus – Select this option to set bus indices on the signal (e.g., [1:0]).

Note The maximum bus width allowed is 1024.

Preview:

This field shows you how the signal name will appear on the schematic.

See Also:

◼ Wire Labels and Names

◼ Working with Wires

◼ Drawing Buses

Terminal Name

The Terminal Name dialog is used to name a terminal.

A terminal can have the following valid names:

◼ Base name only (Terminal_1) – A terminal must have a base name that begins with a letter.

◼ Base name with bus indices (Terminal_1[1:0]) – You may specify left and right indices, if desired.

To Open the Dialog:

Open this dialog in two ways:

◼ Drag a new terminal onto your design, or

◼ Double-click the label or terminal.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 157

Specify Name:

The Specify Name field is used to enter a base name for the signal.

Indices:

Use this section to select one of the following index options:

◼ None – Select this option for no indices on the base name (e.g., Terminal_1).

◼ Bits Range – Select this option to set bus indices on the signal (e.g., [1:0]).

Note The maximum bus width allowed is 1024.

Preview:

This field shows you how the signal name will appear on the schematic.

See Also:

◼ Signal Name

◼ Working with Schematic Terminals

◼ Working with Component Terminals

Tuner Communication Setup

The Tuner Communication Setup dialog allows you to configure the settings used for reading parameters back from
the PSoC device. It allows for selecting the communication port and selecting properties.

Currently, tuners only support communication via I2C. This can be done using the EZ I2C Component or the
standard I2C Component.

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 158

To Open the Dialog:

Open this dialog from the appropriate tuner application.

Currently, the only tuner application is provided with the CapSense® Components. Refer to the Component's
datasheet, available from the Component Catalog.

Interface Description:

Ports

This is a list of all of the ports attached to the computer that can be used to communicate with the tunable
Component. Based on which item is selected, different options will be available for the Port Configuration.

Port Configuration

This section allows for configuring the interface specific options for communicating with the Component. This is
necessary to ensure both Component and tuner are configured the same.

For I2C communication, there are four pieces of required information:

◼ The voltage the port needs to supply to the device, if any.

◼ The speed at which the data can be clocked into the target device.

◼ The Address of the slave device that is being communicated with.

◼ The size of sub-addresses used for indicating what block of data to read.

Port Information

This section displays information about the currently selected port.

See Also:

◼ CapSense® Component datasheets (available from the Component Catalog)

Understanding PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 159

Updated Configuration Files

If you updated the version of the Peripheral Driver Library (PDL) installed on your computer, the Updated
Configuration Files dialog might display during a build of an existing project. This dialog lists files in your project that
might not be compatible with the newer PDL version. Use this dialog to replace the listed files, if needed.

If you are sure that the listed files are correct, then click Cancel to proceed with the build with these files.

If you want files from the newer PDL version, then click Replace to copy new files from the PDL. The existing files
will be renamed to <filename>.old.

See Also:

◼ Peripheral Driver Library

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 160

4 Using Design Entry Tools

The PSoC Creator design entry tools allow you to create a design using abstract symbols and focus on the system
rather than the low-level device details.

This section is divided into the following main categories:

◼ Schematic Editor – primary tool to create designs

◼ Code Editor – tool to edit source code

◼ Design-Wide Resources – tools to configure settings for an entire design

◼ Symbol Editor – tool used to create Components

◼ UDB Editor – tool used to configure a UDB implementation

◼ Other Tools

□ Schematic Macro Editor

□ Sheet Template Editor

□ Format Shape

Additionally, there are several topics that pertain to both editors:

◼ Common Toolbars

◼ Design Elements Palette

◼ Working with Text

◼ Working with Lines

◼ Working with Shapes

◼ Design Entry Reserved Words

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 161

Schematic Editor

The Schematic Editor allows to you to create and edit schematics for your designs and implementations for your
symbols.

The main Components of the Schematic Editor include:

◼ Design Canvas – the canvas on which you draw designs

◼ Design Elements Palette

◼ Common Design Entry toolbars – commands common to the design entry tools

◼ Context Menus – commands available by right-clicking

◼ Component Catalog – library of Components to use in your schematic

This section contains various topics related to working with the Schematic Editor:

◼ Creating a New Schematic

◼ Configuring Component Parameters

◼ Working with Wires

◼ Rubber-Banding

◼ Drawing Buses

◼ Wire Labels and Names

◼ Using Multiple Pages and Connectors

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 162

◼ Disabling/Enabling Schematic Pages

◼ Working with Schematic Terminals

Schematic Editor Context Menu Commands

The Schematic Editor contains various commands available on right-click – or context – menus. The commands
available will vary depending on whether you right-click on the canvas itself or on a Component/element. The
following are the commands available:

On Canvas:

◼ System Reference – Provides access to the most current System
Reference Guide on disk, as well as a link to a web page for other versions
and translations of the document, if available.

◼ Paste – Same as command from the Standard Toolbar.

◼ Select All – Selects everything on the canvas.

◼ Zoom – Same as zoom commands from the View Menu.

◼ Generate Symbol – Creates a new symbol with an automatically generated
default shape; it will automatically include terminals representing the
schematic terminals of the source schematic.

◼ Change Template – Opens the Select Sheet Template dialog to
select/change a sheet template to use for your design.

◼ Disable Page – Disables the selected page. See Disabling/Enabling
Schematic Pages.

◼ Properties – Opens the Properties dialog.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 163

On Selected Object(s):

◼ Cut, Copy, Paste, Delete – Same as commands from the Standard
Toolbar.

◼ Select All – Selects everything on the canvas.

◼ Zoom – Same as zoom commands from the View Menu.

◼ Shape – Same as shape commands from the Common Design
Entry Toolbars.

◼ Select – Allows you to select a specific object when two or more
objects are drawn on top of each other.

◼ Align – When two or more objects are selected, this command
allows you to align selected shapes: left, right center, top, middle,
and bottom.

◼ Configure – Opens the Configure Component Parameters dialog
to edit parameters for the Component instance.

◼ Enable/Disable – Enables or disables the selected Component.
Disabling a Component means that PSoC Creator will ignore it; this
sets the CY_REMOVE flag to true on the Configure dialog under
the Built-In tab.

◼ Open Datasheet – Opens the datasheet for the selected
Component.

◼ Find Code Example – Opens the Find Code Example dialog for
the selected Component.

◼ Open Component Web Page – If available, opens a web page for
the Component, where you can access datasheets in different
languages.

◼ Launch Tuner – If the selected Component has a tuner application,
this command launches the tuner.

◼ Format Shape – Opens the Format Shape dialog to change
various characteristics for the selected shape(s).

◼ Generate Macro – Creates a Schematic Macro from the selected
elements.

◼ Show in analog editor – Shows the selected Component in the
Design-Wide Resources Analog Device Editor.

See Also:

◼ Design Elements Palette

◼ Standard Toolbar

◼ Common Design Entry Toolbars

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 164

Creating a New Schematic

The process of creating a new schematic varies depending on what you are trying to accomplish with the
schematic. Within a project, a schematic can be either the top-level design schematic or a Component
implementation. The process varies for each context.

Top-Level Design Schematic:

If you create a new design project, a top-level design schematic will be created for you along with the rest of the
initial files in your design. This schematic is the top-level design document in which you express your design
graphically using Components and connections. For more information about creating a design project, see My First
Design "Hello World" and Creating a New Project.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 165

Component Implementation Schematic:

If you are working with a library project and Components, a schematic can be the implementation of a Component.
For more information about creating Components, refer to the Component Author Guide.

Within a Component, you must add a schematic implementation manually. You can add a schematic at the
Component level or the project level. At either level, you are adding a Component item of the type schematic. For
more information, see Adding a Component Item.

◼ When you add a schematic at the Component level, you are adding a new schematic item to the existing
Component:

◼ When you add a schematic at the project level, you create a new Component with a schematic as a
Component item:

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 166

Note You may only have one top-level (generic device) schematic per Component. You may also only have one
schematic for each architecture, family, and device level of your Component.

See Also:

◼ Creating a New Project

◼ Component Author Guide

◼ Adding a Component Item

◼ Schematic Editor

◼ Workspace Explorer

Component Catalog

The Component Catalog is a Schematic Editor tool window that contains one or more sets of Components to use in
a design. The Components are organized into categories. Each category contains a tree with the Components.
There can also be one or more tabs with different trees and categories.

Component Tabs

By default, there are two tabs of Components: Cypress and Off-Chip. Cypress Components are always installed.
These are developed by Cypress for use in your designs. Off-Chip or "External" Components, if installed, are used
to document connections the device may have on the development board. They are used for documentation
purposes only. They are described in the External Library Component Datasheet.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 167

Note The location and order of the Components in this catalog are determined by various properties for each
Component. They do not necessarily reflect the actual library in which they are stored. Also, not every Component
is available for every device.

Component Preview

Below the Components is an area with the following:

◼ Open Datasheet – Link to open the selected Component datasheet.

◼ Description – Short summary of the Component.

◼ Component Preview – Preview of the selected Component symbol.

Toolbars:

The Component Catalog contains a set of tools to work with the catalog, as follows:

◼ Show Latest Versions – Shows only the most recent versions of Components with numbers. If there is only
one version, no numbers are shown.

◼ Show All Versions – Shows all versions of Components with Component numbers. If there is only one version,
no numbers are shown.

◼ Expand All – Expands all nodes to show every visible Component.

◼ Collapse All – Collapses all nodes to show only category folders.

◼ Find new Components – Opens the Component Installer dialog to find and install new Components and
Component versions.

◼ Clear Results – Clears the Search for filter.

◼ Search for – Filters the Components shown to those that match the text entered in this field.

Context Menu Commands:

If you right-click on a Component in the tree view, you can access the following commands:

◼ Open Datasheet – Select this option to open the Component's
datasheet.

◼ Find Code Example – Select this option to open the Find Code Example
dialog to open a code example specifically for the selected Component.

◼ Open Component Web Page – If available, this option opens a web
page for the Component, where you can access datasheets in different
languages.

◼ Properties – Select this option to see the basic properties of the
Component. The properties include the library path of the Component.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 168

To View the Component Datasheet:

Click the Open Datasheet link, or select the option from the context menu. The datasheet for that Component will
open.

To Add a Component to a Schematic:

Click on a Component in the catalog and drag it onto the Schematic Editor canvas.

To Search for a Component:

Type text in the search field. As you begin typing, the Components available will filter based on what you type.

Click Clear Results to clear the search results and restore the Component Catalog to view all Components.

See Also:

◼ Schematic Editor

◼ Tool Windows

◼ Component/Instance

◼ Find Code Example

◼ Component Installer

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 169

Configure Component Parameters

When you drag an instance of a Component onto your schematic, you can configure it with the Configure dialog.

Note This help topic is generic. Many Components have customized parameter configuration user interfaces. Refer
to a Component's datasheet for specific information.

To Open this Dialog:

1. Double-click a Component instance or right-click on a Component instance and select Configure.

2. Edit the parameters as appropriate and click OK.

To Open the Component Datasheet:

Click the Datasheet button.

If a Component has a datasheet, it will open in a separate window.

To Rename the Component Instance:

By default, the Component instance will receive the name "INSTANCE_1" where INSTANCE is the name of the
Component, such as PGA, Counter, Timer, etc.

Type the instance name you prefer in the Name field.

Note Once you generate source code for a Component, case-only name changes will be ignored on subsequent
code generation updates. For information about generating code, see Building a PSoC Creator Project and
Generated Files.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 170

Built-In Parameters:

Every Component contains a tab with the following built-in parameters:

◼ Component Major Version - This parameter displays the major version number of the Component.

◼ Component Minor Version - This parameter displays the minor version number of the Component.

◼ Config Data in Flash - Controls whether the configuration structure is stored in flash (const, true) or SRAM (not
const, false).

◼ Disable - This parameter is used to disable the Component and remove the instance from the generated netlist
during a build. The default value is false.

◼ Suppress API generation - This parameter is be used to prevent PSoC Creator from generating APIs for the
specific instance. The default value is false.

◼ User Comments - User provided instance specific comments.

For more information about built-in parameters, refer to the Component Author Guide.

See Also:

◼ Component Catalog

◼ Schematic Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 171

Working with Wires

Using the Schematic Editor, you can draw wires to connect Components and wires. This section covers a few of the
different techniques to use when working with wires:

◼ Drawing a Wire

◼ Connecting to a Terminal

◼ Drawing Multi-point Wires

◼ Connecting to another Wire

◼ Selecting a Wire/Net

See also Wire Labels and Names and Drawing Buses.

To Draw a Wire:

1. Click the Draw Wire tool.

2. Click on the design canvas and drag the mouse to the desired location.

3. Click the left mouse once to continue the wire in a different direction.

4. Double-click to end the wire.

Note The Schematic Editor draws a digital (green) wire when it is connected to digital Components or not
connected to any Components. To draw an analog (red) wire, you must connect it to analog Components.

To Connect to a Terminal:

1. To begin drawing a wire, first create an input and output Component on your schematic.

2. Click the Draw Wire tool.

3. Move your pointer toward the contact point of one of the terminals.

Notice as you near the contact point that your pointer changes to a black X:

4. Click and release the mouse button, and move the pointer to begin drawing the wire.

Notice that the pointer changes to a + .

As you near the next terminal contact point, your pointer again changes to a black X:

5. Click the left mouse button at the second terminal contact point to establish the connection.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 172

The wire becomes selected with a dashed box surrounding it:

To Draw Multi-Point Wires:

1. Use the first example, and move the second terminal down on your schematic:

2. Click the Draw Wire tool.

3. Click and release the mouse button, and move the pointer to begin drawing the wire.

4. Move the pointer down toward the second terminal.

Notice that wire changes shape to an inverted L.

5. Move the pointer down to be even with the terminal, click and release the mouse button, and move the pointer
right – toward the terminal.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 173

Notice that wire obtains an additional point.

You can create as many points as you need by repeatedly clicking the mouse at different points on your
schematic.

6. Click the left mouse button at the second terminal contact point to establish the connection.

The wire becomes selected with a dashed box surrounding it.

To Connect to Another Wire:

1. Use the first example again, and create an additional output terminal on your schematic.

2. Click the Draw Wire tool.

3. Move your pointer toward an existing wire.

Notice as you near the contact point that your pointer changes to an X:

4. Click and release the mouse button, and move the pointer to begin drawing the wire.

Notice that a dot appears on the wire to denote a connection point.

5. Click the left mouse button at the third terminal contact point to establish the connection.

The wire becomes selected with a dashed box surrounding it.

To Select a Wire/Net:

◼ To select a wire, click on it once with the left mouse button.

◼ To select a segment of a wire net from one connection point to another, right-click on a wire and select Select
Wire Segment.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 174

◼ To select an entire wire net, right-click on a wire and select Find Wire Trace.

See Also:

◼ Using Design Entry Tools

◼ Schematic Editor

◼ Design Elements Palette

◼ Signal Name

Rubber-Banding

The rubber-banding feature automatically redraws your wires as you move objects on your design schematic. The
feature is enabled by default.

To Use Rubber-Banding:

Select one or more objects on your schematic and move them to another location on your screen. Notice as you
move the objects, the wires stretch with the movement. You can move items by dragging the mouse or using
[Arrow] keys.

If you stop the movement with the mouse for a moment, PSoC Creator will show a preview of how the wires will be
redrawn. Using [Arrow] will not show a preview.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 175

To Correct a Rubber-Banding Problem:

Sometimes, PSoC Creator may not be able to redraw the wires. In this case, the move will not be allowed. The

cursor will show a "No" symbol, and the status bar will display a message indicating the move was not allowed.

If you release the mouse button, the Component will move back to the previous location. A dialog will also display
as follows:

Try selecting fewer objects or temporarily disabling rubber-banding. You can also select a larger region of objects
and try to move them as a unit.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 176

To Temporarily Disable Rubber-Banding:

When rubber-banding is turned on, press and hold the [Ctrl] key while moving a Component. The wire preview will
not be shown during a move. If you release the [Ctrl] key, the preview will reappear.

If you release the mouse button while holding the [Ctrl] key, the wires will not be redrawn for this move, and the
connections will be broken.

To Turn Off Rubber-Banding:

1. Open the Options dialog from the Tools menu.

2. Under the Design Entry category, scroll down to the Wires section.

3. Find the rubber-banding option and select Off.

4. Click OK to close the dialog.

Now when you move a Component, the wires are not redrawn by default.

To Temporarily Enable Rubber-Banding:

When rubber-banding is turned off, press the [Ctrl] key while moving a Component.

See Also:

◼ Design Entry Options

◼ Keyboard Shortcuts

Drawing Buses

To draw a bus, you simply connect a wire to a multiple bit connection. The wire inherits the bus width automatically.
You may also specify the width of a wire name, using the Signal Name dialog. This allows you to create a bus
without connecting it to anything. It also allows you to rip signals from the bus to connect to smaller width signals.

The following diagram shows an example of two Pins Components -- one configured with individual 1-bit terminals
connected to wires and the other configured as a 4-bit bus:

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 177

To Connect Buses to Smaller Width Signals (Ripping Signals):

You cannot directly connect a bus to a smaller width signal (without receiving DRC errors in the Notice List
window). Instead, you must create a multi-point wire and label the portion of the wire connecting to the smaller
width terminal, as shown in the following example:

1. Create a 4-bit Pins Component and four AND Components each with a 1-bit terminal width.

Refer to Configure Component Parameters, Component Catalog, and Working with Shapes as necessary.

2. Use the Draw Wire tool and make a multi-point connection from the 4-bit port to the farthest single-bit
Component terminal.

As soon as the connection is made, an error will display about inconsistent widths (among other connection
errors).

3. Click on the canvas to de-select the entire wire.

4. Double-click on the wire segment connecting to a single-bit terminal.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 178

The Signal Name dialog opens to name the wire. See Signal Name for more information.

5. De-select Use computed name and width and de-select Specify Full Name.

6. Select the Bit option and select Index [3].

7. Click OK to close the dialog.

Notice the label displays and the wire connecting to the terminal becomes thin.

8. Connect the bus to each of the other single-bit terminals. Label them [0], [1], and [2], respectively, using the
same process as described above.

Tip You can copy and paste the completed wire, and then double-click the label to edit the signal name.

Note You can connect various width signals using the same process and not all bits from an input pin need to be
used. However, every bit of an output bus must be driven.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 179

See Also:

◼ Signal Name Dialog

◼ Working with Wires

◼ Wire Labels and Names

◼ Notice List Window

Wire Labels and Names

This section provides details about displaying and editing wire labels in the Schematic Editor. A wire can have an
explicit User Name, and every (valid) wire has an Effective Name. You can see these names on the schematic
canvas, if displayed, or in the Properties dialog.

◼ Wire Label – The wire label is the displayed name of a wire. Displaying the wire label is optional, and it is only
displayed for wires with User Names.

◼ User Name – The User Name is the label you specify for a wire, using the Signal Name dialog. Not every wire
must have a User Name.

◼ Effective Name – This is the name computed by the connectivity subsystem. The name is derived from the
sources in the schematic, for example, connected input schematic terminals. Every (valid) wire has an Effective
Name and is never empty.

Wire Label Display Scheme in the Schematic Editor:

◼ If you provide a name, PSoC Creator will display the label with the User Name.

◼ If the wire does not have a User Name, PSoC Creator will not display the label.

◼ When you edit the name, the User Name will be set. The Effective Name cannot be set.

◼ The wire properties in the Properties dialog show the Effective Name and User Name.

Note If you copy and paste a wire with a User Name, PSoC Creator will not rename the wire, even though PSoC
Creator will rename other pasted elements, such as Components and terminals. There may be some cases where
copying and pasting a wire with a User Name connected to terminals and Components will cause DRC errors, and
you will have to rename the wire appropriately, or remove the label.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 180

To Set a User Name for a Wire:

1. Double-click on a wire to open the Signal Name dialog.

2. On the dialog, de-select Use computed name and width and select Specify Full Name.

3. Type the desired User Name in the field and click OK.

The specified User Name will be shown attached to the wire.

Note If a wire has an existing User Name, you can double-click the label to open the Signal dialog.

To Move a Wire Label:

Click the wire label to select it, and drag it another location. The wire anchor will always display attached to the
middle of the wire segment.

See Also:

◼ Schematic Editor

◼ Properties

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 181

◼ Signal Name

◼ Working with Wires

Using Multiple Pages and Connectors

You can add multiple pages to your design if it is too large for one sheet, or if you just want to separate different
sections of your design for readability. You connect elements on different pages using sheet connectors. This topic
shows you how to add a page to your schematic and how to connect elements on different pages.

To Add a Page:

Right-click on the schematic page tab at the bottom of the schematic, and select Add Schematic Page.

The new page is added as a tabbed document.

To Rename a Page:

1. Right-click on the schematic page tab at the bottom of the schematic, and select Rename Page.

The Rename Page dialog displays.

2. Type the name for the page and click OK.

The page tab displays the name you entered.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 182

To Delete a Page:

Right-click on the schematic page tab at the bottom of the schematic, and select Delete Page.

The selected page tab is removed.

Note You cannot delete the page tab if there is only one.

To Use Sheet Connectors:

Sheet connectors connect to wires or buses on multiple sheets, with the connection point in the center of the
shape. They are unnamed and have no defined flow direction.

Every simple wire name and every bit of a bus present on multiple sheets must be connected to a sheet connector
on each sheet where used. When using sheet connectors with input terminals and buses, keep in mind that when a
base name is used in an input terminal, it must define the entire signal. So, using bits of a signal that were not
defined by the input terminal on a separate page will violate the existing rules. See Wire Labels and Names and
Drawing Buses.

Note You can connect wires by name on the same page of a schematic without sheet connectors.

1. Click the Wire icon and draw a wire on two different pages of your schematic.

2. Double-click each wire and give each wire the same name (e.g., "foo").

Notice that the Notice List window shows a sheet connector error.

3. Click the Sheet Connector icon and place a connector on each wire on each page.

Once all wires are connected, the Notice List window will clear.

The following image shows some examples of valid sheet connections:

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 183

See Also:

◼ Working with Wires

◼ Wire Labels and Names

◼ Wide Terminals and Wires

Disabling/Enabling Schematic Pages

Disabling a schematic page allows you to specify a portion of a design to be excluded from the build. You can
disable (and re-enable) one or more pages in your schematic design. This allows you remove sections for testing
and debugging, as well as provide different configurations.

Possible Build Errors

Before disabling a schematic page, make sure the name of the schematic page tab starts with a letter, and includes
only alphanumeric and space characters.

When a schematic page is disabled, the system creates a macro in the cydisabledsheets.h file, named after that
schematic page's tab. If the tab name begins with a number, or is otherwise not a valid C identifier, the system
creates an invalid macro name. This will cause build errors.

To Disable a Page:

Right-click on the schematic page tab at the bottom of the schematic, and select Disable Page.

The schematic page will be disabled and the word "Disabled" will appear on the schematic and the tab.

To Enable a Disabled Page:

Right-click on the schematic page tab at the bottom of the schematic, and select Enable Page.

The schematic page will become active again.

Note If there are other active pages in the schematic that have Component instance names that are the same as
those on the page you are trying to enable, the Merge Dialog will display to resolve the conflicts.

See Also:

◼ Schematic Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 184

◼ Merge Dialog

Working with Schematic Terminals

The terminal tools in the Design Elements Palette for schematics allow you to draw digital input, output, and inout,
as well as analog and external terminals.

Use schematic terminals when you are implementing a Component with a schematic to represent the external
connectivity of the Component within the chip. For more information about creating Components, refer to the
Component Author Guide.

Note Schematic terminals are hidden from the Design Elements Palette when you are editing a top-level
schematic; they are only available for Component implementation schematics. For more information, see Creating
a New Schematic.

To Place a Single Terminal:

1. Click the appropriate Terminal tool on the Design Elements Palette and then click on the design canvas.

The Terminal Name dialog displays.

2. Specify the Terminal Name and Index information, as appropriate.

3. Click OK.

To Place Multiple Terminals:

1. Double-click on the appropriate Terminal tool in the Design Elements Palette and then click on the design
canvas.

2. Click repeatedly on the canvas to place multiple terminals.

This is called "sticky mode."

3. Press [Esc] or click the Select Tool to escape sticky mode.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 185

To Rename a Terminal:

1. Double-click the label to open the Terminal Name dialog.

2. Type the appropriate Terminal Name.

3. Click OK.

Note If you copy and paste a terminal onto a schematic, PSoC Creator will rename the pasted Component by
appending "_n" to the name, where n is next available number.

To Delete a Terminal:

Select the terminal and press [Delete] or click .

See Also:

◼ Schematic Editor

◼ Design Elements Palette

◼ Terminal Name

Code Editor

The Code Editor, or text editor, allows you to view and edit source files in PSoC Creator. You can open multiple files
in tabbed document windows, and copy and paste among files.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 186

The following describe the different sections of the Text Editor:

◼ Code Pane – The area where code or text is displayed for editing. It provides Autocomplete statement
completion for the language in which you are developing. You can navigate back and forth to previous cursor
locations, using [Ctrl]+[-] and [Ctrl]+[Shift]+[-], respectively.

◼ Indicator Margin – A gray column on the left side of the Code Editor where indicators such as breakpoints,
bookmarks, shortcuts, and Inline Code Diagnostics are displayed. Clicking this area sets a breakpoint on the
corresponding line of code. For more information see the Debugger section.

◼ Selection Margin – A column between the Indicator Margin and the Code Pane where you can click to select
lines of code. This area shows line number. Also, changes to code are tracked here when you select Track
Changes in the Options dialog, under Text Editor > General.

◼ Toolbar and Commands

◼ Code Explorer Window

◼ Autocomplete

To Open the Text Editor:

There are various ways to open a file in the Text Editor:

◼ Workspace Explorer – Double-click a file.

◼ File menu – Select New or Open to display a file.

See Also:

◼ Document Windows

◼ Workspace Explorer

◼ Code Editor Toolbar

◼ Code Editor Context Menu Commands

◼ Autocomplete

◼ Code Outline Tool Window

◼ Find All References

◼ Inline Code Diagnostics

◼ Find Replace

◼ Options Dialog > Text Editor options

◼ Go To Line

◼ Using the Debugger

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 187

Code Editor Toolbar

The Text Editor toolbar contains the following commands:

◼ Toggle Bookmark – Adds/removes a bookmark in the margin for the current line.

◼ Comment Selection – Changes selected text to a comment.

◼ Uncomment Selection – Removes comment for selected text

◼ Increase Line Indent – Indents selected text to next tab stop.

◼ Decrease Line Indent – Outdents selected text to the previous tab stop.

Code Editor Context Menu Commands

The Text Editor contains various commands available on right-click – or context – menus. The commands available
will vary depending on whether you are editing source code files or running the debugger. The following are the
commands available:

In Edit Mode:

◼ Insert Breakpoint – Adds a new file/line breakpoint to
the line that the cursor is currently on. See Breakpoints
Window.

◼ Break Here Once – Adds a new temporary file/line
breakpoint to the line that the cursor is currently on.
After this breakpoint has been hit once, it will
automatically be removed.

◼ Go To Declaration – Similar to the Go To Definition, this
option jumps to the symbol implementation. However,
unlike, the Go To Definition, this jumps to the actual
declaration/implementation. Most of the time, this will
jump directly to the source file that declared the function.
The only cases where this will not occur are if there is
no declaration found (e.g., declared in an included
library).

◼ Go To Definition – If tool tip information is not sufficient
for answering whatever question you might have, this
option jumps to the definition of the selected symbol. If
the symbol is declared in a different source file, this will
jump to the included header file. If the symbol is
declared in the current source file, it will jump to that
location.

◼ Find All Active References – Allows you to search for
all references to a symbol. See Find All References.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 188

◼ Go Back – Go back to previous cursor location.

◼ Undo – Undoes the last edit to the file.

◼ Redo – Undoes the last undo

◼ Cut – Cuts the selected text

◼ Copy – Copies the selected text

◼ Paste – Pastes the text currently in the clipboard into
the file

◼ Delete – Deletes the selected portion of text

◼ Select All – Selects the text from the entire document

In Debug Mode:

The context menu contains all the same commands as in edit mode, plus the following commands:

◼ Add Watchpoint – Adds a new watchpoint on the selected
variable; see Variable Watchpoints

◼ Add Watch – Adds the variable, or selected text to the watch
window; see Watch Window

◼ Run to Cursor – Resumes executing code till it reaches the
line

◼ Set Next Instruction – Jumps the program to the current line
of code

See Also:

◼ Text Editor

◼ Text Editor Toolbar

◼ Using the Debugger

◼ Debugger Toolbar Commands

◼ Debugger Menu Commands

◼ Variable Watchpoints

◼ Watch Window

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 189

Autocomplete

If enabled, the autocomplete feature provides a context-aware drop-down list of all potentially relevant keywords,
types, variables, macros, and functions as you type.

Note This feature is enabled by default. You can disable it under the Text Editor Options.

This feature helps you to write code faster. It also provides enormous value as a documentation source. You no
longer need to constantly go back to the datasheet or source file to find the function you need. Simply start typing to
see what is available.

Note Completions are limited until the project has been built.

In addition to providing the list of what is available, the Code Editor displays a tool tip of the selected item to provide
the full signature. In the case of functions, this shows the return value, the name of the function, and the types and
names of all argument variables.

To Use the Feature:

1. If not already enabled, enable to the Autocomplete feature in the Text Editor Options dialog. The feature is
enabled by default.

2. Create your design as usual, and click the Generate Application button to allow PSoC Creator to
generate or update the various API files.

3. Open the Code Editor and begin typing; notice the drop-down list opens when it finds items that match. You can
also initiate the feature using [Ctrl] + [Space].

4. Scroll through the list to find what you want, or just keep typing until the desired item is highlighted. You can
press [Ctrl] + [Space] to toggle between show macros only, show non-macros only, or show all.

5. Once the desired item is selected in the list, press [Tab] or [Enter] to autocomplete the word. [Esc] will cancel
the autocomplete process.

The selected item is inserted and case adjusted to match the actual signature that you completed.

See Also:

◼ Code Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 190

Code Explorer Window

The code explorer feature allows you to see the entire structure of your source file with a quick glance. With it, you
can see what is defined and where. You can also use it to jump to specific areas of your code.

To Display the Code Explorer Tool Window:

This tool window displays automatically when you open the Code Editor. It is located on the right side of the tool. If
you close the tool window, you can open it again by selecting Code Explorer under the View menu.

To Jump to Specific Location:

Double-click an item or press [Enter] when the item is highlighted.

The code editor will immediately scroll to that symbol.

Toolbar:

The Code Explorer toolbar contains the following formatting options to change how the outline is presented:

◼ Expand All / Collapse All – Separate buttons to expand or collapse all nodes in the entire tree.

◼ Show in Groups – Toggle button to group various symbols together or view them separately.

◼ Sort Order – Button and pull-down to change the ordering by name or position in the file.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 191

Context Menu:

When you right-click on a node item in the tree, the following commands are available. See also Code Editor
Context Menu Commands.

◼ Go To Declaration – This option jumps to the declaration of the
selected symbol.

◼ Go To Definition – This option jumps to the definition of the
selected symbol.

Icons:

Each item show in the tree includes an icon. The following lists what the icons mean:

◼ – Include Directive

◼ – Macro

◼ – Struct

◼ – Typedef

◼ – Union

◼ – Enum

◼ – Enum constant

◼ – Function

◼ – Argument Variable

◼ – Variable

See Also:

◼ Code Editor

◼ Code Editor Context Menu Commands

Find All References

The Find All References feature allows you to find all items that are using a particular symbol (function, macro,
variable, type).

To use This Feature:

Right-click on a symbol in the Code Editor and select Find All Active References from the context menu, or press
[Ctrl] + [Shift] +[R].

PSoC Creator scans through the entire project in order to find all uses of the symbol, and displays the results of this
search in the Find Results window.

Double click on an entry in the Find Results to jump to that location in the source code.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 192

See Also:

◼ Code Editor

◼ Find Results

Inline Code Diagnostics

When enabled, this feature displays compiler diagnostic information directly in the editor. This allows you to see
what problems exist in the code without needing to do a full build of the project.

Note This feature is enabled by default. You can disable it under the Text Editor Options.

The diagnostics displayed in the editor may not correspond to the errors/warnings generated when performing a
build. This is because the editor uses a generic build framework that does not have identical rule checkers as the
active toolchain. Because of this, none of the diagnostics are displayed in the Notice List. The errors/warnings
displayed in the Notice List are strictly limited to what is generated for the current design configuration.

Note If an error about a missing include is shown, other errors in the document may not be displayed. This occurs
because missing include files are considered fatal and limit what additional processing is performed. If a critical
include cannot be found, it could very well cause almost every line in the file to be identified as an error, which
would obscure the actual problem (missing include file).

To Use the Feature:

Save the current file. Any issues in the code will display with a waved line.

Hover the mouse over the margin indicator or the waved line to see a tooltip of the problem.

The margin on the left displays if the error is a warning or an error.

See Also:

◼ Code Editor

◼ Reference Tooltips

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 193

Reference Tooltips

If enabled, the Code Editor provides reference tooltips to make the code easier to read and understand, such as
what a block of code is doing or what various arguments to a function do.

Note This feature is enabled by default. You can disable it under the Text Editor Options.

To Use the Feature:

Hover the mouse over any reference type (variable, function, or macro) to see the declaring signature of that item.

See Also:

◼ Code Editor

Disabled Code

The Code Editor identifies disabled code in a grayed-out color. This helps alleviate the issue of code being difficult
to read due to congestion.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 194

PSoC devices and Components used in designs are highly configurable, plus there are several different devices
and toolchains supported by PSoC Creator. This requires the use of a significant number of #ifdef statements
throughout the firmware code, which makes reading and debugging the code difficult.

The disabled code feature significantly improves the readability and understandability of the code. It also helps
improve the debugging experience. You can clearly see that large blocks of code are disabled and understand
immediately why the debugger stepped over them.

This functionality is provided automatically with no necessary user interaction.

Find Replace

The Find Replace dialog is used to locate text within a file and optionally replace it.

This dialog varies slightly depending on how you opened it. There are separate help topics for Find in Files and
Replace in Files.

To Open the Find Replace Dialog:

Use any of the following methods:

◼ Press [Ctrl]+[F] (for find) or [Ctrl]+[H] (for find and replace).

◼ On the Edit menu, select Find and Replace, and then select the appropriate find/replace command.

◼ Click the displayed find/replace button icon or select one of the find/replace options from the pull-down menu.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 195

To Use the Find Replace Dialog:

Find what

Use this field to specify the string or expression to find. You can reuse one of the last 20 search strings by selecting
it from this drop-down list, or type a new text string or expression to find.

Replace with

Use this field to replace instances of the Find what string with another string. To delete instances of the Find what
string, leave this field blank.

Expression Builder

Use the triangular button next to the Find what and Replace with fields when the Use check box is selected under
Find options.

Click this button to display a list of wildcards or regular expressions, depending upon the Use option selected.
Choosing any item from this list adds it to the Find what or Replace with string.

Look in

Use this pull-down menu to select Current Document or All Open Documents.

Find options

You can expand or collapse the Find Options section. The following options can be selected or cleared:

◼ Match case – When selected, the Find Results windows will only display instances of the Find what string that
are matched both by content and by case. For example, a search for "MyObject" with Match case selected will
return "MyObject" but not "myobject" or "MYOBJECT."

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 196

◼ Match whole word – When selected, the Find Results windows will only display instances of the Find what
string that are matched in complete words. For example, a search for "MyObject" will return "MyObject" but not
"CMyObject" or "MyObjectC."

◼ Search up – When selected, files are searched from the insertion point to the top of the file.

◼ Search hidden text – When selected, the search will also include concealed and collapsed text, such as the
metadata of a design-time control; a hidden region of an outlined document; or a collapsed class or method.

◼ Use – Indicates how to interpret special characters entered in the Find what or Replace with fields. The
options include:

◼ Wildcards – Special characters such as asterisks (*) and question marks (?) represent one or more characters.
See Wildcards.

◼ Regular Expressions – Special notations define patterns of text to match. See Regular Expressions.

Buttons

Click the appropriate button, as follows:

◼ Find Next – Click this button to find the next instance of the Find what string within the search scope chosen in
Look in.

◼ Bookmark All – Click this button to display bookmarks at the left edge of the text editor to indicate each line
where an instance of the Find what string occurs.

◼ Replace – Click this button to replace the current instance of the Find what string with the Replace with string,
and find the next instance within the Look in scope.

◼ Replace All – Click this button to replace all instances of the Find what string with the Replace with string, in
all files within the Look in scope.

See Also:

◼ Text Editor

◼ Find in Files

◼ Replace in Files

◼ Regular Expressions

◼ Wildcards

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 197

Find in Files

The Find in Files dialog allows you to search the code of a specified set of files for a string or expression. The
matches found and actions taken are listed in the Find Results window selected under Result options.

To open the Find in Files dialog:

Use any of the following methods:

◼ Press [Ctrl]+[Shift]+[F].

◼ On the Edit menu, select Find and Replace, and then select Find in Files.

◼ Select Find in Files from the pull-down menu.

To use the Find in Files dialog:

Find what

Use this field to specify the string or expression to find. You can reuse one of the last 20 search strings by selecting
it from this drop-down list, or type a new text string or expression to find.

Expression Builder

Use the triangular button next to the Find what and field when the Use check box is selected under Find options.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 198

Click this button to display a list of wildcards or regular expressions, depending upon the Use option selected.
Choosing any item from this list adds it into the Find what string.

Look in

Use this pull-down menu to select Current Document or All Open Documents.

Click the [...] button to select a directory in which to search. You can also check the Include subfolders check box
to search sub folders of the specified search directory.

Find options

You can expand or collapse the Find Options section. The following options can be selected or cleared:

◼ Match case – When selected, the Find Results windows will only display instances of the Find what string that
are matched both by content and by case. For example, a search for "MyObject" with Match case selected will
return "MyObject" but not "myobject" or "MYOBJECT."

◼ Match whole word – When selected, the Find Results windows will only display instances of the Find what
string that are matched in complete words. For example, a search for "MyObject" will return "MyObject" but not
"CMyObject" or "MyObjectC."

◼ Use – Indicates how to interpret special characters entered in the Find what or Replace with fields. The
options include:

□ Wildcards – Special characters such as asterisks (*) and question marks (?) represent one or more
characters. See Wildcards.

□ Regular Expressions – Special notations define patterns of text to match. See Regular Expressions.

◼ Look at these file types – This list indicates the types of files to search through in the Look in directories. If
this field is left blank, all of the files in the Look in directories will be searched.

□ Select any item in the list to enter a preconfigured search string that will find files of those particular
types.

□ To find a type of file not available from the drop-down list, enter an asterisk (*) wildcard for the file
name, followed by a period (.) and the desired file extension. To find more than one file type, enter
multiple file extensions separated by a semicolon (;).

Result options

You can expand or collapse the Result options section. The following options can be selected or cleared:

◼ Find Results 1 window – Select this option to display the results of the current search in the Find Results 1
window. This window opens automatically to display your search results. To open this window manually, select
Find Results from the View menu and choose Find Results 1.

◼ Find Results 2 window – Select this option to display the results of the current search in the Find Results 2
window. This window opens automatically to display your search results. To open this window manually, select
Find Results from the View menu and choose Find Results 2.

◼ Display file names – Select this check box to display a list of files containing search matches rather than
displaying the search matches themselves.

Buttons

Click the appropriate button, as follows:

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 199

◼ Find All – Click this button to find all instances of the Find what string within the search scope chosen in Look
in. The results are displayed in the Results window chosen under Result options.

See Also:

◼ Replace in Files

◼ Find Replace

◼ Find Results

◼ Regular Expressions

◼ Wildcards

Replace in Files

The Replace in Files dialog allows you to search the code of a specified set of files for a string or expression and
change some or all of the matches found. The matches found and actions taken are listed in the Find Results
window selected under Result Options.

To Open the Replace in Files Dialog:

Use any of the following methods:

◼ Press [Ctrl]+[Shift]+[H].

◼ On the Edit menu, point to Find and Replace, and then click Replace in Files.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 200

◼ Select Replace in Files from the pull-down menu.

To Use the Replace in Files Dialog:

Find what

Use this field to specify the string or expression to find. You can reuse one of the last 20 search strings by selecting
it from this drop-down list, or type a new text string or expression to find.

Expression Builder

Use the triangular button next to the Find what and field when the Use check box is selected under Find options.

Click this button to display a list of wildcards or regular expressions, depending upon the Use option selected.
Choosing any item from this list adds it into the Find what string.

Look in

Use this pull-down menu to select Current Document or All Open Documents.

Click the [...] button to select a directory in which to search. You can also check the Include subfolders check box
to search sub folders of the specified search directory.

Find options

You can expand or collapse the Find Options section. The following options can be selected or cleared:

◼ Match case – When selected, the Find Results windows will only display instances of the Find what string that
are matched both by content and by case. For example, a search for "MyObject" with Match case selected will
return "MyObject" but not "myobject" or "MYOBJECT."

◼ Match whole word – When selected, the Find Results windows will only display instances of the Find what
string that are matched in complete words. For example, a search for "MyObject" will return "MyObject" but not
"CMyObject" or "MyObjectC."

◼ Use – Indicates how to interpret special characters entered in the Find what or Replace with fields. The
options include:

□ Wildcards – Special characters such as asterisks (*) and question marks (?) represent one or more
characters. See Wildcards.

□ Regular Expressions – Special notations define patterns of text to match. See Regular Expressions.

◼ Look at these file types – This list indicates the types of files to search through in the Look in directories. If
this field is left blank, all of the files in the Look in directories will be searched.

□ Select any item in the list to enter a preconfigured search string that will find files of those particular
types.

□ To find a type of file not available from the drop-down list, enter an asterisk (*) wildcard for the file
name, followed by a period (.) and the desired file extension. To find more than one file type, enter

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 201

multiple file extensions separated by a semicolon (;).

Result options

You can expand or collapse the Result options section. The following options can be selected or cleared:

◼ Find Results 1 window – Select this option to display the results of the current search in the Find Results 1
window. This window opens automatically to display your search results. To open this window manually, select
Find Results from the View menu and choose Find Results 1.

◼ Find Results 2 window – Select this option to display the results of the current search in the Find Results 2
window. This window opens automatically to display your search results. To open this window manually, select
Find Results from the View menu and choose Find Results 2.

◼ Keep modified file open after – Select this check box to leave open the files that were modified during the
Replace in Files operation..

Buttons

Click the appropriate button, as follows:

◼ Find Next – Click this button to find the next instance of the Find what string within the search scope chosen in
Look in.

◼ Replace – Click this button to replace the current instance of the Find what string with the Replace with string,
and find the next instance within the Look in scope.

◼ Replace All – Click this button to replace all instances of the Find what string with the Replace with string, in all
files within the Look in scope.

◼ Skip File – Becomes available when the Look in list includes multiple files. Click this button if you do not want
to search or modify the current file. The search will continue in the next file on the Look in list.

See Also:

◼ Find in Files

◼ Find Replace

◼ Find Results

◼ Regular Expressions

◼ Wildcards

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 202

Regular Expressions

Regular expressions are a concise and flexible notation for finding and replacing patterns of text. A specific set of
regular expressions can be used in the Find what field of the Find Replace window.

To enable the use of regular expressions in the Find what field during find and replace operations, select Use >
Regular Expressions under Find Options.

The triangular button next to the Find what field displays a list of the most commonly used regular expressions.

When you choose any item from the Expression Builder, it is inserted into the Find what string.

Note There are syntax differences between the regular expressions that can be used in Find what strings and
those that are valid in .NET Framework programming. For example, in Find Replace, the braces notation {} is used
for tagged expressions. So the expression zo{1} matches all occurrences of zo followed by the tag 1, as in Alonzo1
and Gonzo1. But within the .NET Framework, the notation {} is used for quantifiers. So the expression zo{1}
matches all occurrences of z followed by exactly one o, as in "zone" but not in "zoo."

Regular Expressions for Find and Replace:

The following are the regular expressions available in the Reference List.

Expression Syntax Description

Any character . Matches any single character except a line break.

Zero or more * Matches zero or more occurrences of the preceding expression, making all possible
matches.

One or more + Matches at least one occurrence of the preceding expression.

Beginning of line ^ Anchors the match string to the beginning of a line.

End of line $ Anchors the match string to the end of a line.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 203

Expression Syntax Description

Beginning of word < Matches only when a word begins at this point in the text.

End of word > Matches only when a word ends at this point in the text.

Line break \n Matches a platform-independent line break. In a Replace expression, inserts a line
break.

Any one character in
the set

[] Matches any one of the characters within the []. To specify a range of characters, list the
starting and ending character separated by a dash (-), as in [a-z].

Any one character not
in the set

[^...] Matches any character not in the set of characters following the ^.

Or | Matches either the expression before or the one after the OR symbol (|). Mostly used
within a group. For example, (sponge|mud) bath matches "sponge bath" and "mud
bath."

Escape \ Matches the character that follows the backslash (\) as a literal. This allows you to find
the characters used in regular expression notation, such as { and ^. For example, \^
Searches for the ^ character.

C/C++ Identifier :i Matches the expression ([a-zA-Z_$][a-zA-Z0-9_$]*).

Quoted string :q Matches the expression (("[^"]*")|('[^']*')).

Space or Tab :b Matches either space or tab characters.

Integer :z Matches the expression ([0-9]+).

Additional Regular Expressions

The list of all regular expressions that are valid in find and replace operations is longer than can be displayed in the
Reference List. You can also insert any of the following regular expressions into a Find what string:

Expression Syntax Description

Minimal zero or more @ Matches zero or more occurrences of the preceding expression, matching as few
characters as possible.

Minimal one or more # Matches one or more occurrences of the preceding expression, matching as few
characters as possible.

Repeat n times ^n Matches n occurrences of the preceding expression. For example, [0-9]^4 matches any
4-digit sequence.

Grouping () Groups a subexpression.

nth tagged text \n In a Find or Replace expression, indicates the text matched by the nth tagged
expression, where n is a number from 1 to 9.

In a Replace expression, \0 inserts the entire matched text.

Right-justified field \(w,n) In a Replace expression, right-justifies the nth tagged expression in a field at least w
characters wide.

Left-justified field \(-w,n) In a Replace expression, left-justifies the nth tagged expression in a field at least w
characters wide.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 204

Expression Syntax Description

Prevent match ~(X) Prevents a match when X appears at this point in the expression. For example,
real~(ity) matches the "real" in "realty" and "really," but not the "real" in "reality."

Alphanumeric character :a Matches the expression ([a-zA-Z0-9]).

Alphabetic character :c Matches the expression ([a-zA-Z]).

Decimal digit :d Matches the expression ([0-9]).

Hexadecimal digit :h Matches the expression ([0-9a-fA-F]+).

Rational number :n Matches the expression (([0-9]+.[0-9]*)|([0-9]*.[0-9]+)|([0-9]+)).

Alphabetic string :w Matches the expression ([a-zA-Z]+).

Escape \e Unicode U+001B.

Bell \g Unicode U+0007.

Backspace \h Unicode U+0008.

Tab \t Matches a tab character, Unicode U+0009.

Unicode character \x####
or
\u####

Matches a character given by Unicode value where #### is hexadecimal digits. You can
specify a character outside the Basic Multilingual Plane (that is, a surrogate) with the
ISO 10646 code point or with two Unicode code points giving the values of the
surrogate pair.

Standard Unicode Character Properties

The following table lists the syntax for matching by standard Unicode character properties. The two-letter
abbreviation is the same as listed in the Unicode character properties database. These may be specified as part of
a character set. For example, the expression [:Nd:Nl:No] matches any kind of digit.

Expression Syntax Description

Uppercase letter :Lu Matches any one capital letter. For example, :Luhe matches "The" but not "the".

Lowercase letter :Ll Matches any one lower case letter. For example, :Llhe matches "the" but not "The".

Title case letter :Lt Matches characters that combine an uppercase letter with a lowercase letter, such as Nj
and Dz.

Modifier letter :Lm Matches letters or punctuation, such as commas, cross accents, and double prime,
used to indicate modifications to the preceding letter.

Other letter :Lo Matches other letters, such as gothic letter ahsa.

Decimal digit :Nd Matches decimal digits such as 0-9 and their full-width equivalents.

Letter digit :Nl Matches letter digits such as roman numerals and ideographic number zero.

Other digit :No Matches other digits such as old italic number one.

Open punctuation :Ps Matches opening punctuation such as open brackets and braces.

Close punctuation :Pe Matches closing punctuation such as closing brackets and braces.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 205

Expression Syntax Description

Initial quote
punctuation

:Pi Matches initial double quotation marks.

Final quote punctuation :Pf Matches single quotation marks and ending double quotation marks.

Dash punctuation :Pd Matches the dash mark.

Connector punctuation :Pc Matches the underscore or underline mark.

Other punctuation :Po Matches (,), ?, ", !, @, #, %, &, *, \, (:), (;), ', and /.

Space separator :Zs Matches blanks.

Line separator :Zl Matches the Unicode character U+2028.

Paragraph separator :Zp Matches the Unicode character U+2029.

Non-spacing mark :Mn Matches non-spacing marks.

Combining mark :Mc Matches combining marks.

Enclosing mark :Me Matches enclosing marks.

Math symbol :Sm Matches +, =, ~, |, <, and >.

Currency symbol :Sc Matches $ and other currency symbols.

Modifier symbol :Sk Matches modifier symbols such as circumflex accent, grave accent, and macron.

Other symbol :So Matches other symbols, such as the copyright sign, pilcrow sign, and the degree sign.

Other control :Cc Matches Unicode control characters such as TAB and NEWLINE.

Other format :Cf Formatting control character such as the bi-directional control characters.

Surrogate :Cs Matches one half of a surrogate pair.

Other private-use :Co Matches any character from the private-use area.

Other not assigned :Cn Matches characters that do not map to a Unicode character.

Additional Properties

In addition to the standard Unicode character properties, the following additional properties may be specified as
part of a character set.

Expression Syntax Description

Alpha :Al Matches any one character. For example, :Alhe matches words such as "The", "then",
and "reached".

Numeric :Nu Matches any one number or digit.

Punctuation :Pu Matches any one punctuation mark, such as ?, @, ', and so on.

White space :Wh Matches all types of white space, including publishing and ideographic spaces.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 206

Expression Syntax Description

Bidi :Bi Matches characters from right-to-left scripts such as Arabic and Hebrew.

Hangul :Ha Matches Korean Hangul and combining Jamos.

Hiragana :Hi Matches hiragana characters.

Katakana :Ka Matches katakana characters.

Ideographic/Han/Kanji :Id Matches ideographic characters, such as Han and Kanji.

See Also:

◼ Wildcards

◼ Find Replace

◼ Find in Files

◼ Replace in Files

Wildcards

The following expressions can replace characters or digits in the Find what field of the Find and Replace window.

To enable the use of regular expressions in the Find what field during find and replace operations, select Use >
Wildcards under Find Options.

The triangular button next to the Find what field displays a list of the available wildcards. When you choose any
item from the Reference List, it is inserted into the Find what string.

Wildcards for Find and Replace:

The following are the wildcards available in the Reference List.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 207

Expression Syntax Description

Any single
character

? Matches any single character.

Any single digit # Matches any single digit. For example, 7# matches numbers that include 7 followed by another
number, such as 71, but not 17.

Characters not
in set

[!] Matches any one character that is not specified in the set.

Escape \ Matches the character that follows the backslash (\) as a literal. This allows you to find the
characters used in wildcard notation, such as * and #.

One or more
characters

* Matches any one or more characters. For example, new* matches any text that includes "new",
such as newfile.txt.

Set of
characters

[] Matches any one of the characters specified in the set.

See Also:

◼ Regular Expressions

◼ Find Replace

◼ Find in Files

◼ Replace in Files

Find Results

The Find Results window displays matches found when using the Find in Files and Replace in Files dialogs.

There are two Find Results windows. The Result options allow you to choose the Find Results window where any
matches found will be listed. The selected Find Results window opens automatically whenever matches are found.

To Display Find Results Window Manually:

Select Find Results from the View menu and choose Find Results 1 or Find Results 2.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 208

To Select to a Match:

Double-click any line in the results list. The source file is displayed in the Text Editor with the insertion point placed
where the matched text begins. A symbol appears in the indicator margin of the Editor to mark the line that includes
the match, and the status bar displays its full text.

See Also:

◼ Text Editor

◼ Find in Files

◼ Replace in Files.

Search Result

The Search Result dialog displays informational messages for search results as part of Find.

This dialog will only display when you select the option under Text Editor Options.

You can disable this dialog by de-selecting the Always show this message check box.

The messages you may see with this dialog include:

◼ The following specified text was not found: xxxx

◼ Find reached the starting point of the search.

◼ No more occurrences found in the specified documents.

◼ # occurrence(s) replaced.

See Also:

◼ Text Editor

◼ Find Replace

◼ Text Editor Options

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 209

Go To Line

The Go To Line dialog is used to go to a specific line of code.

To Open the Dialog:

Press [Ctrl] + [G] or select Go To from the Edit menu.

To Go to a Specific Line:

Type the line number and click OK.

The cursor goes to the specified line number.

See Also:

◼ Text Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 210

Design-Wide Resources

The PSoC Creator Design-Wide Resources (DWR) system provides a single location to manage all the resources
in your design. Such resources include pins, clocks, interrupts, DMA, etc. Each new design project provides a
default design-wide resources file (<project>.cydwr) file with the same name as the project.

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

Only design projects can have a <project>.cydwr file, and there can be only one file per design project. All
modifications to the DWR information are stored in this file. This design-level information is stored in a way that
makes it portable between devices.

Note During the process of selecting a different device, if any errors will exist if the selection were to continue, you
will be prompted before the device selection has actually changed. At this point, you can cancel the device change
or continue and the appropriate errors will be generated.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 211

To Open the <project>.cydwr File:

If not already displayed, open the Source tab of Workspace Explorer for a design project.

The <project>.cydwr file is located in the project tree, under the project's TopDesign.cysch file.

Double-click the appropriate resource to open its editor.

The file opens as a tabbed document in the work area, and it allows you to access the other design-wide resources
in your project.

You can switch between the different resources by clicking the appropriate tab, but you can only edit one resource
at a time.

To Add a <project>.cydwr File to a Design Project:

You cannot copy or cut the <project>.cydwr file from within PSoC Creator directly; however, you can add the file as
an existing item to another design project. You can also add a new .cydwr file to a design project.

◼ Add Existing Item – Adds an existing .cydwr file to the design project. The file will be copied from the selected
location into the design project’s folder. It will also be renamed to match the project name.

◼ Add New Item – Adds a new .cydwr file to the design project. If one already exists, a message will display to
ask if you want to overwrite the file.

To Delete/Exclude a <project>.cydwr File:

You can delete the <project>.cydwr file or exclude it from your project. If no <project>.cydwr file exists inside the
project, only default values will be used and you cannot edit them.

See Also:

◼ Pin Editor

◼ Analog Device Editor

◼ Clock Editor

◼ MFT Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 212

◼ Interrupt Editor

◼ DMA Editor

◼ System Editor

◼ Directives Editor

◼ Flash Security Editor

◼ EEPROM Editor

Pin Editor

The Pin Editor consists of an interactive image of the selected device, as well as a table of available signals in your
design. This editor allows you to manually assign and/or lock pins in your device before PSoC Creator executes the
place and route operation of the build process. If you don't assign pins, or if you manually unassign them, PSoC
Creator will automatically assign them during the next build. Assigned and locked pins will stay in the same location
for each subsequent build. Unlocked pins could potentially be moved on subsequent builds, depending on resource
usage.

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

To Open the Pin Editor:

Double-click the .cydwr file in the Source tab of Workspace Explorer.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 213

The file opens as a tabbed document in the work area, and it allows you to access the various design-wide
resources in your project. The Pin Editor (Pins tab) displays on top by default. If another editor is displayed, click
the Pins tab to bring it to the top.

Device Image:

The selected device image shows the various pins and ports. Each pin contains its corresponding pin number.
Each pin’s functionality (i.e., Vcc, n/c, etc.) or port name displays next to or inside the pin. Hovering the mouse over
a particular pin will show all of the capabilities of that pin.

Perimeter vs. Ball Grid Array

For TQFP, QFN, and SSOP/SOIC devices, the Pin Editor shows the pins in a perimeter view. For BGA/CSP
devices, it shows the pins using a ball grid array view. The following image shows an example of each view.

The coloring of the pins, as well as the port/pin numbers and labels are the same for both views. The process for
assigning and locking pins is also the same for both views. However, for the perimeter view, any assigned signal
name displays adjacent to the pin, but it doesn't for the ball grid array view.

Pin Coloring and Style

The style of the pin can help identify certain characteristics of the pin, as described in the following tables.

Static Image

Pin Style Description

Text Color Black with white text indicates this is a no-connect pin.

Text Color Dark green with white text indicates this is a power pin.

Text Color
Orange with white text indicates this is a reserved pin. The reason the pin is reserved (that is, used for
debugging, used for external crystal, etc.) will be displayed next to the pin in orange.

Text Color White with black text and a light gray border indicates an unassigned port pin.

Text Color Light blue with black text and a black border indicates an assigned, unlocked, port pin.

Text Color Dark blue with black text and a black border indicates an assigned, locked, port pin.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 214

Pin Style Description

Text Color
(or Text
Color)

Red with black or white text means this is an invalid pin assignment. Black text means that the current
assignment is invalid, but it may be possible to assign other pins to this port; white text means the pin is either
no-connect or power. This state could occur when switching the selected device after making some pin
assignments. An error will be added to the Notice List for each invalid assignment.

Pins that have signals assigned to them are drawn with a black border.

Dragging a Pin

Pin Style Description

Text Color
White with black text indicates that pin guidance information has not yet been calculated. This pin may or
may not be a valid assignment once it has been calculated.

Text Color Green with black text indicates this is a valid (recommended) assignment.

Text Color
Yellow with black text indicates this is a valid assignment, but there is a consequence if you select it (for
example, resource usage).

Text Color (or
Text Color)

Gray with black or white text means this is a not a legal pin assignment due to silicon or design constraint.

Pins that have signals assigned to them are drawn with a black border.

Signal Table:

The signal table contains all the signals in a table format with the following columns:

Column Description

(Status)
If assigned, this contains an indicator for the assignment's validity, as shown in the table under Dragging a Pin.
If an illegal assignment has been made (and locked), there will be an error icon for that signal.

Name The name of the signal as defined for the pin. If the pin has an alias, it is shown in parentheses.

Port
The device's pin shown in port form. This field can also be used to make a pin assignment by selecting the
desired port[pin] from the drop-down list. An asterisk (*) indicates that a particular assignment is preferred. An
empty cell indicates no assignment has been made.

Pin
The device's pin number for the device to which this signal is assigned. This field can also be used to make a
pin assignment by selecting the desired pin number from the drop-down list. An asterisk (*) indicates that a
particular assignment is preferred. An empty cell indicates no assignment has been made.

Lock
Specifies whether or not the signal’s assignment is locked (i.e., cannot be moved by a build). This cell is only
editable for assigned pins.

Signals can be displayed in one of the following states:

◼ Assigned and Locked – A signal that has been assigned and locked to a particular pin is displayed in the table
as a dark blue row.

◼ Assigned and Unlocked – A signal that has been assigned but not locked is displayed in the table as a light
blue row.

◼ Unassigned – Signals that have not been assigned are white. This will be auto-assigned by PSoC Creator on
the next build.

Note Double-clicking a row in the table will display the design containing the associated Pins Component, and open
the Configure dialog for it.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 215

To Assign a Pin:

Assign a pin using either of the following methods:

◼ Click on a signal in the Signal Table or on a pin already assigned elsewhere on the device and drag it to the
desired location on the device image.

Note While dragging a pin, a tooltip will indicate whether or not the current location is valid in addition to the
coloring noted above.

◼ Select an assignment from the Pin column pull-down menu in the Signal Table. You can also type the pin
assignment in the field. While typing, legal assignments that are still possible based on what has currently been
typed will display. Values are entered in the form of:

□ P#[#] – Specifies a location where the first # is the port number and the second # is the offset within the
port.

□ P#[#:#] – Specifies a range of locations where the first # is the port number, the second number is the
offset within the port where the MSB of the signal should be placed, and the last # is the offset within
the port where the LSB of the signal should be placed.

□ A range can also be specified as any combination of the above two formats separated by commas.

To Unassign a Pin:

Unassign a pin using either of the following methods:

◼ Right-click on an assigned pin on the device image and select Auto-assign <signal> during build.

◼ Select the <Auto-assign during build> row from the Port or Pin column pull-down menu in the Signal Table.

To Unassign All Pins:

Right-click anywhere in the device image section of the Pin Editor and select Auto-assign all during build.

To Lock a Pin:

Lock a pin using either of the following methods:

◼ Manually assign a pin; it will be locked by default.

◼ If a pin is assigned but not locked, right-click on the pin in the device image and select Lock <signal> or select
the Lock check box in the table for the desired signal.

On the right-click menu, the Lock All option will lock all assigned pins.

To Unlock a Pin:

Right click on the pin in the device image and select Unlock <signal> or de-select the Lock check box in the table
for the desired signal.

On the right-click menu, the Unlock All option will unlock all locked pins.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 216

To Scroll, Pan, and Zoom:

If device image is too large, scroll bars will display to allow you to see other areas of the device. Use these
techniques as appropriate:

◼ To auto-scroll, drag a signal to the edge of the device image.

◼ Use the mouse wheel to scroll up and down; press [Shift] + mouse wheel to scroll left and right.

◼ To pan, press [Alt] + left click and drag.

◼ To zoom, press [Ctrl] + mouse wheel.

See Also:

◼ Mapper, Placer, Router

◼ Design-Wide Resources

Analog Device Editor

The Analog Device Editor provides an interconnect view of the PSoC device along with place-and-route results for
a particular design. The editor also allows for manual place-and-route with the ability to lock-down all or some of the
results.

It operates in two separate modes:

◼ Design – shows the results of a build in design mode (this is default mode of the tool)

◼ Debug – provides a view into the current state of the device while debugging (see Analog Device Editor
Debugging)

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 217

The Analog Device Editor contains three major sections: analog interconnect diagram, design information table,
and properties.

Analog Interconnect Diagram:

The analog interconnect diagram shows how various analog Components, wires, switches, and pins are laid out on
the device and how they may be connected. Unused resources are shown as gray. Used resources are shown as
black if they are not selected. If a used Component or pin is selected, it is shown as blue. Selected routes and
switches are shown as the color chosen in the table. The following image shows the Legend used for the
interconnect diagram.

If you hover the cursor over used resources, tooltips display relevant information. This same information will be
displayed in the Properties area when the resource is selected.

Wires

Wires can be locked (cannot move between builds). This includes resources locked by MARS Components and
control files (even though the editor can over-ride those placements). Locked wires are solid lines; unlocked wires
are dashed lines.

Wires locked in the Analog Device Editor can also be unlocked. Wires locked by other sources must be unlocked by
those sources.

Switches

Switches are displayed as circles. A solid color means the switch is closed. White means the switch is open. Gray
means the state is not known.

◼ In design mode, the check box selections in Properties for muxes control the display of run-time changeable
switches.

◼ In debug mode, the state is based on the value of the actual register and can be edited from the GUI. If the mux
that “owns” the switch is hardware-controlled it is displayed in gray when debugging.

Note: DMA access to a software-controlled AMux will potentially cause the debugger to show erroneous states.

Switch breakpoints are shown by a dotted/dashed line around the switch. If the breakpoint is enabled the line is red;
if disabled, it is amber.

Switches are grouped within the device and this shall be shown by a dotted box around the circles. These groups
allow either at-most-one active terminal or any number of active terminals. The latter shall be distinguished in the
diagram with a gray fill in the surrounding box.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 218

Pins and Components

Locked pins and Components include a small pad-lock icon.

Digital pins used in the design are shown with a black background, white text, and teal “tips”. However, no routing
information is shown for digital pins.

Design Information Table:

The columns have the following headings.

◼ Name refers to the instance name.

◼ Lock is a check box coercing the item to use the associated resource. It is possible to lock or unlock all listed
items in the Lock column using the pull-down menu, as follows:

◼ Lock All – Lock all routes in the design.

◼ Unlock All – Unlock all routes in the design.

◼ Lock selection – Locks/unlocks the selected route. Locked routes
are shown as solid lines; unlocked routes are shown as dashed
lines.

◼ Unlock selection – Marks the selected wire as unused. See Route
Editing.

◼ Cleanup... – Opens the Locked Route Cleanup dialog to remove
locked net information that is no longer applicable to the current
design.

◼ Color allows the user to choose a display color in the Interconnect panel, from a pull-down, for a routing
resource. Note that it is common for resources to be displayed multiple times (for example, when a net
connects a pin to an analog resource in the top schematic), and so changing the color in one place requires a
(silent) change everywhere else.

◼ Type is the Component name (e.g. “PGA_v1_70”) or resource type (i.e. “MUX” or “NET”).

The entries in the table are listed alphabetical order by instance name and only that column may be used to change
the order of entries.

Each entry (Components, pins and muxes) is expandable/collapsible to show lower levels of the Component
hierarchy and the resources to which they are connected.

There are buttons at the top of the table to toggle on and off viewing selected items: Components, Muxes, and
Pins.

Properties:

The Properties area displays information based on the selection in the table or diagram. If you select multiple
items, the area will not show any information. The area displays differently if you select pins/Components versus
muxes.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 219

Component/Pins View

For Components and pins, this area displays various read-only properties depending on what is selected. The
properties that can be displayed include the following:

◼ Net name (for nets only)

For a named a wire in the schematic, the tool displays that name. When the schematic wire is un-named, it
displays a machine-generated net name.

◼ Drive mode (for pins only)

◼ Component name

◼ Resource name

◼ Lock status

Use the buttons at the top of the panel to order the properties alphabetically or by category.

Mux View

For muxes, the Properties area displays an editable image of the selected mux to choose the active channels in
the interconnect diagram and Ohm Meter. If the target is a differential mux then making a channel active always
applies to both connections.

The diagram includes check boxes to choose the active channels(s) of the mux. It also shows the net names
associated with each channel and the common terminal. The coloring for each net will be the same as that chosen
in the table. When you select and de-select a channel, the change is reflected in the interconnect diagram and the
Ohm meter.

Use the Check All and Uncheck All buttons at the top of the panel to select all or de-select all channels,
respectively.

Note If the AtMostOneActive parameter is set to "true," then you can only select one channel and the Check All
button will be disabled.

See Also:

◼ Analog Device Editor Context Menus

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 220

◼ Ohm Meter

◼ Manual Placement

◼ Route Editing

◼ Analog Device Editor Debugging

Analog Device Editor Context Menus

The Analog Device Editor contains various commands available on right-click – or context – menus. The commands
available will vary depending on whether you right-click on a pin, Component, or signal. You can right-click on items
in the interconnect diagram and in the table. The following are the commands available:

On Component:

◼ Go to <Component> in schematic – Opens the selected
Component in the Schematic Editor.

◼ Start Ohm meter – Opens the Ohm Meter to the selected
signal.

◼ Lock to/Unlock From <Location> – Toggles lock/unlock for
this Component to/from the existing location.

◼ Relocate – Allows you to move the selected primitive to
another location. This option is disable if no other valid
locations are available. See also Manual Placement.

◼ Lock All – Lock all routes in the design.

◼ Unlock All – Unlock all routes in the design.

◼ Copy – Copies the interconnect diagram to a bitmap file that
you can paste in an appropriate editor.

◼ Select All – Selects everything on the interconnect diagram.

On Pin:

◼ Go to <Pin> in schematic – Opens the selected pin in the
Schematic Editor. .

◼ Start Ohm meter – Opens the Ohm Meter to the selected pin.

◼ Lock to/Unlock from <Location> – Locks/unlocks this pin
to/from the existing location.

◼ Go to in pin editor – Opens the Pin Editor and selects the same
pin.

◼ Lock All – Lock all routes in the design.

◼ Unlock All – Unlock all routes in the design.

◼ Copy – Copies the interconnect diagram to a bitmap file that you
can paste in an appropriate editor.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 221

◼ Select All – Selects everything on the interconnect diagram.

On Wire:

◼ Lock route – Locks/unlocks the selected route. Locked routes are shown as
solid lines; unlocked routes are shown as dashed lines.

◼ Rip up – Marks the selected wire as unused. See Route Editing.

◼ Re-route – Switches the Analog Device Editor to Manual Routing mode.
See Route Editing.

◼ Remove obsolete "Entire Net" route data – Removes nets that were
locked as part of an entire net when you change the schematic.

◼ Lock All – Lock all routes in the design.

◼ Unlock All – Unlock all routes in the design.

◼ Copy – Copies the interconnect diagram to a bitmap file that you can paste
in an appropriate editor.

◼ Select All – Selects everything on the interconnect diagram.

On Switch:

◼ Add/Edit breakpoint – Used to add or edit breakpoints. See Analog Device
Editor Debugging.

◼ Lock route – Locks/unlocks the selected route. Locked routes are shown as
solid lines; unlocked routes are shown as dashed lines.

◼ Rip up – Marks the selected wire as unused. See Route Editing.

◼ Re-route – Switches the Analog Device Editor to Manual Routing mode.
See Route Editing.

◼ Lock All – Lock all routes in the design.

◼ Unlock All – Unlock all routes in the design.

◼ Copy – Copies the interconnect diagram to a bitmap file that you can paste
in an appropriate editor.

◼ Select All – Selects everything on the interconnect diagram.

See Also:

◼ Analog Device Editor

◼ Schematic Editor

◼ Pin Editor

◼ Ohm Meter

◼ Manual Placement

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 222

◼ Route Editing

◼ Analog Device Editor Debugging

Ohm Meter

The Ohm Meter displays the resistance between pairs of points (pins and/or Components but not wires or switches)
in the Analog Device Editor interconnect view. The dialog allows you to change probe points in the diagram and see
the parasitics. The dialog also contains SPICE route data.

Probes are displayed in the interconnect diagram with an attached pin. The first-placed pin is pink and, when it is
placed, all legal destination probe points are automatically marked with blue probes. Select a blue pin to see the
resistance for that route. Re-selecting the start-point for probing clears previous probes, clears the dialog results,
and refreshes the legal destination (blue) probes.

To Open the Ohm Meter:

Right-click on a pin or Component in the diagram or the table and select Start Ohm Meter >. Then point to the
access point from which to start.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 223

Parasitic Tab:

This tab displays the resistance between the two points when you click a blue pin in the diagram. This includes the
total resistance and the resistance of every switch in the route.

The Access Point pull-down menu allows you to change the second selected pin as an alternative to clicking on
different blue pins.

SPICE Tab:

This tab shows a SPICE netlist for the route. This is read-only text.

Use the Copy to Clipboard button to copy the data to a simulator of your choice.

See Also:

◼ Analog Device Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 224

Manual Placement

The Analog Device Editor manual placement feature allows you to specify where analog Components should be
placed when a build is performed. You cannot use this feature to place pins. Instead you must use the Pin Editor.

To Manually Place a Component:

Right-click on a Component and select Relocate >. Then point to the desired location. The menu will only allow
valid moves. If no move is available, the menu item will be disabled.

You may move a Component to a currently occupied location. The existing Component will be placed in a new
location by the subsequent build.

Signal Routing

After selecting the new location, the routed signals will be redrawn in a temporary state, also known as a rat's nest.
This is only shown if the route is selected.

During a build, the routing will updated to follow allocated signals.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 225

Resource Locking

All Component moves result in the resource being locked. The Component will be shown with a lock symbol.

To unlock the resource, right-click on the Component and select Unlock from <location>.

If you unlock the resource before doing a build, the unlock action will move the Component back to its original
location.

If you unlock the resource after doing a build, the icon will remain until you do another build, because the editor
interprets the lock being in place from an external source.

See Also:

◼ Analog Device Editor

◼ Pin Editor

◼ Context Menus

◼ Route Editing

Route Editing

Route editing consists of ripping up routes and re-routing signals, as well as manually selecting switches to route
signals. Context Menus are included on various elements to facilitate route editing.

Rip-Up

◼ Nets – When a net is ripped up, the wires and switches used to route the net are marked as unused

◼ Net-Ties/Net-Joins – When a Net-Tie or Net-Join is selected, you can rip up the entire net or any of the sub-
nets collected to form the entire net. Ripping up any of the sub-nets is the same as ripping up a net. Ripping up
the entire net causes all of the individual sub-nets to be ripped up, as well as the additional resources used to
implement the net-tie and net-join Components.

◼ Muxes – Rip-up of a mux is applied to the entire mux. When a mux is ripped up, all of the wires and switches
used to route the mux are marked as unused.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 226

Re-Route

When you select the Re-Route command, the Analog Device Editor enters manual route editing mode. In this
mode, you can manually route signals by clicking on switches to open or close them. Switches available for routing
are shown highlighted in the default color; switches not available are grey. When you select a switch to route a
signal, addition switches become available to select.

Open switches are shown as hollow circles; closed switches are shown as solid circles.

While editing, the Status Bar shows the operation in progress.

Two buttons are available: Commit Edit or Cancel Edit. "Commit" saves and locks the routing; "Cancel" reverts
the Analog Device Editor the state prior to editing.

Mux Routes

Editing a mux arm is similar to editing a signal net with the following differences:

◼ The endpoints to be connected are nets rather than pins.

◼ When you start editing a mux, all of the resources used by the mux (for all arms) are temporarily marked as
unused to allow the user maximum flexibility in reusing resources shared with other arms.

Net-Ties and Net-Joins

Editing net-ties and net-joins are similar to editing a mux. However instead of joining a single pair of nets, editing
these may involve any number of sub-nets.

◼ The endpoints to be connected are nets rather than pins (like muxes).

◼ There are separate rip-up and edit operations since there is no resource sharing.

See Also:

◼ Analog Device Editor

◼ Analog Device Editor Context Menus

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 227

Analog Device Editor Debugging

The debug view in the Analog Device Editor allows users to view/modify the live state of the analog routing on the
chip. The debug view will automatically become active when you start debugging. While in debug mode, the
interconnect diagram background is yellow, and the label at the bottom right indicates that it is in debug mode.

The Analog Device Editor will automatically go back to the design view when the debug session has stopped.

Open/Close Switches:

In debug view, you can use the context menu to open/close any switch that is not DSI controlled. Switches that are
DSI controlled will be displayed with a grey center to indicate that they are “used;” however, PSoC Creator does not
know the current state of the switch.

Note Because the state of the Analog Device Editor can be changed without the CPU running, it may be out of
date. Right-click on the interconnect diagram and select Refresh to update all visible debug windows.

Switch Breakpoints:

Breakpoints are implemented with the on-chip address breakpoint(s). The breakpoint applies to the whole register,
which controls a number of switches and unrelated elements. The debugger determines whether the break
occurred as a result of the switch-of-interest and ignores (continues execution) other changes.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 228

To set a breakpoint, right-click on a switch. You can set the following conditions: on changed, on opened, on closed.

Once select, the breakpoint displays in the Memory Watchpoint window.

You can set multiple breakpoints in a signal register with a single breakpoint resource. If the maximum number of
breakpoints has been reached (regardless of the use) and you try to set a new one, PSoC Creator will indicate that
the break cannot be set until another breakpoint is cleared or disabled.

See Also:

◼ Analog Device Editor

◼ Analog Device Editor Context Menus

◼ Memory Watchpoint

Locked Route Cleanup

The Locked Route Cleanup dialog that lets you clean up locked route information for nets where either the net no
longer exists in the schematic, or is no longer locked due to schematic changes. You can selectively delete any of
this data without unlocking anything else.

To Open this Dialog:

Select Cleanup... from the Locked pull-down menu in the Analog Device Editor table.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 229

To Use this Dialog:

Select one or more nets for which to remove locked route information,and click OK.

You can also use the Select All or Deselect All buttons.

See Also:

◼ Analog Device Editor

Clock Editor

The Clock Editor is a design-wide resources tool to create and edit clocks. This tool allows you to view all clocks,
add and delete design-wide clocks, as well as edit design-wide and system clocks.

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

To Open the Clock Editor:

Double click the Clocks icon in the Design-Wide Resources tree, located in the Source tab of Workspace Explorer.

The <project>.cydwr file opens as a tabbed document in the work area, with the Clock Editor (Clocks tab)
displayed on top.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 230

Clock Editor Toolbar:

The toolbar contains the following commands:

◼ Add Design-Wide Clock – This command allows you to add a design-wide clock to your design. See Add/Edit
Design-Wide Clock.

◼ Delete Design-Wide Clock – This command allows you to delete any design-wide clocks you may have
added.

◼ Edit Clock – This allows you to edit design-wide clocks in your design. See Add/Edit Design-Wide Clock.

Clock Table:

The Clock Editor displays all the clocks using a table. By default, clocks are sorted by Type. You can sort by any
column by clicking the column header and switch between ascending and descending order

Note A secondary sort is always performed on the Nominal Frequency column.

Column Description

Type The clock type:

• System – internal and external clocks sources that can be used in your design

• Design-wide – clocks declared in the clock editor that are sharable across the entire design

• Local – clocks added to schematics via Components

• Boost – low voltage analog boost clock shown when the Variable Vdda option is selected in
the System Editor.

Name The name of the clock.

If a clock is in an error state, an icon will display by the clock's name. Hovering over the icon will
display a tooltip with a message describing the error. This errors will also be displayed in the Notice

List Window.

Domain Analog or Digital. This information is determined by PSoC Creator.

Desired
Frequency

The desired frequency for the clock. If not used ‘? MHz’ will be displayed.

Nominal
Frequency

The nominal frequency for the clock. This is determined by the system solving the clocks. If not
solvable ‘? MHz’ will be displayed.

Accuracy Displays the clock’s accuracy as a percent.

Tolerance Displays the tolerance range entered for the clock as a percent. If no tolerance has been specified ‘-‘
will be displayed.

Note Tolerance can only be specified for Auto clocks.

Divider Displays the divider used for the clock. This may have been specified elsewhere or calculated when
the clocks were solved.

Start on Reset If checked, this option will cause the _Start() function to be called for the clock pre-main (checked by
default). You can set this option for all ‘New’ local clocks and all design-wide clocks.

There is a pull-down menu next to the column header, which allows you to check or uncheck all the
applicable boxes at once.

System clocks show this box as read-only. For them the value is determined by their enabled state in
the Configure System Clocks dialog. ‘Existing’ clocks also have this field as read-only. It displays the
‘Start on Reset’ value for its source clock in this case.

Source Clock The clock, if any, used to create the clock. Clocks whose input clock was not explicitly specified (i.e.,
<Auto> was selected) will be displayed as "Auto: Clock the solver picked."

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 231

Digital and Analog Clocks:

PSoC Creator automatically figures out whether a user-created clock is digital or analog. It looks across the whole
design at the fanout and if the clock drives analog primitives, it is an analog clock. If the clock does not connect to
an analog primitive, it is assumed to be digital. If a clock connects to a mixture of digital and analog primitives, a
DRC error is generated.

Tolerance Support:

PSoC Creator will support a robust system of clock accuracy and tolerance related DRCs.

Local and design-wide clocks have the ability to add required tolerances (+X%, -Y% or +X ppm, -Y ppm).

System clocks internal to the device display their accuracy information. System clocks that come from outside the
device (e.g., XTAL, XTAL 32kHz, and Dig Sig) will allow you to enter accuracy statistics (+X%, -Y% or +X ppm, -Y
ppm). The default accuracy values will be +0%, -0%.

The PSoC Creator clock system will take the accuracy of the reference clock, the actual achieved frequency, and
compare that against the tolerance and requested frequency. If the achieved frequency/accuracy falls outside the
requested bounds, a DRC error will be generated.

See Also:

◼ Configure Local Clock

◼ Configure System Clocks

◼ Add/Edit Design-Wide Clock

◼ Select Source Clock

◼ Clock Component Datasheet (available from the Component Catalog)

◼ Design-Wide Resources

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 232

Configure Local Clock

The Configure clock dialog allows you to configure various characteristics for a local clock that you placed onto a
schematic. Refer also to the Clock Component datasheet available from the Component Catalog.

This dialog has the following main sections:

◼ Clock Name – Allows you to type a name for the local clock.

◼ Configuration – Allows you to specify characteristics for the clock.

◼ Summary – Displays information about the clock being create and the source clock being used (if Source is
not <Auto>).

To Create a Local Clock:

Create a local clock by dragging a clock Component form the Component Catalog onto a schematic.

To Open the Dialog:

Double-click the clock Component to open the Configure Clock dialog.

To Configure a Local Clock:

You can configure the local clock as follows:

1. In Name, type a name for the clock or accept the default name.

2. For Clock Type, select New or Existing. New clocks use device resources and have APIs generated for them.
Existing clocks do not use hardware resources and do not have APIs generated for them; they are simply an
alias to a clock already defined.

3. Specify the Source configuration, as follows:

◼ Clock Type: New / Source: <Auto> – Enter the Frequency and optionally a Tolerance range. PSoC Creator
figures how to implement it.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 233

◼ Clock Type: New / Source: Specified – Select a particular source clock from the pull down menu to divide
down. Then enter a desired frequency or explicit divider.

□ If you specify a Desired Frequency, PSoC Creator calculates the divider automatically.

□ If you specify a Divider, PSoC Creator uses it as specified.

◼ Clock Type: Existing / Source: Specified – Create an alias for the given source clock.

You can view the clock characteristics for various clocks using the design-wide resources Clock Editor.

See Also:

◼ Design-Wide Resources

◼ Clock Editor

◼ Component Catalog

◼ Clock Component Datasheet (open from the Component Catalog)

Configure System Clocks

The Configure System Clocks dialog provides a graphical diagram showing the various system clocks in the
selected device for your design, as well as their relationship to each other.

This dialog allows you to specify different characteristics about the system clocks.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 234

◼ A check mark indicates that the clock is enabled. When a clock is disabled it turns gray and its contents are
replaced by text explaining how to enable it. Some clocks cannot be disabled.

◼ The lines show where clock signals can go. If a line is gray, then the current clock configuration does not use
that path.

◼ The error icon indicates that the clock is configured incorrectly. Hovering over the icon will display a
message indicating exactly what is wrong.

Note This dialog will contain different clocks and options depending on the device selected for the design. For
some devices, this dialog will be split into different tabs for high-frequency and low-frequency clocks.

For specific details about the configuration options for system clocks, refer to the appropriate Technical Reference
Manual.

Digital Signal:

The Digital Signal can be configured to use any routed digital signal in your design. When using the output from a
digital pin as the Digital Signal, you will need to ensure that the pin is configured with the input as unsynchronized.
This is done via the Input tab in the Pins Component Configure dialog by deselecting the "Input Synchronized"
option. For more information, refer to the Pins Component datasheet.

To Open this Dialog:

In the Design-Wide Resources Clock Editor:

◼ Double-click a system clock, or

◼ Select a system clock and click Edit Clock.

To Enable/Disable a System Clock:

Click the check box for the appropriate clock to enable or disable.

Note Some clocks cannot be disabled. Their check boxes are dimmed.

See Also:

◼ Design-Wide Resources

◼ Clock Editor

◼ Clock Component Datasheet (open from the Component Catalog)

◼ Pins Component Datasheet (open from the Component Catalog)

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 235

XTAL Configuration

The XTAL Configuration dialog is used to configure characteristics for the external crystal.

To Open the Dialog:

Enable the XTAL on the System Clock Editor, and click the Configure button.

To Configure the XTAL:

Select/enter the appropriate fields and click OK.

Fields:

The following fields are used to configure the XTAL as needed.

Frequency/Accuracy:

Use these fields to specify the frequency and accuracy of the XTAL.

Enable fault recovery:

This check box enables fault recovery. Fault recovery allows the output of the XTAL to be switched from the XTAL
clock to the IMO if the XTAL is detected to have stopped working properly. It uses the watchdog/error signal inside
the XTAL.

Note This field produces an error: "The XTAL clock cannot use fault recovery when it is also used by the IMO."
when it is set to true and the XTAL sources the IMO.

Enable oscillator voltage pumps:

This check box controls the oscillator voltage pumps, via bit 3 (xpump_dis) of the FASTCLK_XMHZ_CSR register.
This can be used to save power and reduce jitter. The check box is not selected by default, meaning this feature is
not enabled.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 236

Use default timeout:

This check box is selected by default. It indicates whether the system will use the default timeout at startup, or a
user-customized one.

◼ Startup timeout (ms) – When using the default timeout, this field is read only and displays the default timeout
value. If you deselect the Use default timeout check box, this field becomes enabled to specify a timeout
based on specific XTAL requirements.

Halt on XTAL startup error:

This check box enables the “while(1);” code in the ECO error handler. It is enabled by default, and the application
halts before main(). If you deselect this check box, the code will continue to main (and you are expected to handle
the clock error appropriately).

Note This field is ignored when the XTAL does not source the bus clock. No message will be shown if this occurs.

Reference levels:

◼ Automatic – This option is selected by default. Reference levels are calculated from the given XTAL
frequency. The XTAL clock initialization uses these values to set the CFG1 register.

◼ Manual – This option is used by advanced users. This enables the Feedback and Watchdog fields to fine tune
the reference level configuration. The XTAL clock initialization uses these values in the CFG1 register.

□ Enable automatic gain control – This check box enables automatic gain control (AGC). AGC
measures oscillation amplitude and compares it to a reference value. If it is too high or low, an internal
adjustment is made in the XTAL to increase or decrease amplitude. This reduces drive level and helps
to meet crystal requirements. It is not needed in all cases. This check box is not selected by default.
When it is selected, the Feedback field becomes visible under Watchdog.

□ Watchdog – The watchdog (XERR/error detection) is a circuit that measures oscillation amplitude and
compares it to a reference value. If it is too low, an error signal that goes to a status register bit is
asserted. This bit can be polled in software, and also controls a mux that implements "fault recovery."
The watchdog is used at XTAL startup to determine when oscillations have reached an acceptable
amplitude, and the XTAL can be used as a clock source throughout the part. The watchdog reference
level is the voltage to which the oscillation amplitude is compared when determining if oscillation is
acceptable.

□ Feedback – The feedback reference level is the voltage of which the oscillation amplitude is compared.

Amplitude adjustment:

◼ Automatic – This option is selected by default. The Amplifier Gain (AMPIADJ) field is calculated from the
given XTAL frequency. This option allows you to specify Shunt capacitance and Load capacitance of the
crystal. These will be used with the XTAL frequency to calculate the value of AMPIADJ, which the XTAL clock
initialization uses to set the CFG0 register.

◼ Manual – This option is used by advanced users. This enables the Amplifier Gain (AMPIADJ) field to
manually enter a specific value for AMPIADJ. The XTAL clock initialization uses this value to set the CFG0
register.

See Also:

◼ Clock Editor

◼ Configure System Clocks

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 237

System Clock APIs

System Clock APIs are provided with the cy_boot generated API files. System clock APIs are listed and described
in the System Reference Guide.

After a successful build, generated files are located in the Workspace Explorer, in a folder named
"Generated_Source/<Architecture Name>/cy_boot". For more information about the build process, refer to
Generated Files.

See Also:

◼ System Reference Guide

◼ Workspace Explorer

◼ Generated Files

Add/Edit Design-Wide Clock

The Add/Edit Design-Wide Clock dialog allows you to add and edit various design-wide clocks in your design.

Note Design-wide clocks use resources on the device and have APIs generated for them with a "Cy" prefix.

To Open the Dialog:

You open this dialog from the Clock Editor.

◼ Click Add Design-Wide Clock to open the dialog to create a new design-wide clock.

◼ Double-click an existing design-wide clock to open the dialog for editing.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 238

To Configure Design-Wide Clock:

You can configure the design-wide clock as follows:

1. In Name, type a name for the clock or accept the default name.

2. In Clock Type (PSoC 4/PSoC 6 only), select "New" or "Existing."

3. In Source, select the type of source clock from the pull down menu.

◼ Selecting "<Auto>" allows you to specify the Desired Frequency and optionally the Tolerance. The source and
divider are then calculated by PSoC Creator.

◼ Selecting "<Select Signal...>" opens the Select Source Clock dialog to select from a list of available signals.

◼ Selecting "<Select Pin...>" (PSoC 4/PRoC BLE devices only) opens the Select Source Clock (from Pin) dialog
to select from a list of available pins.

◼ Selecting any other specific base clock allows you to specify the Desired Frequency or Divider, as follows:

□ If you specify a Desired Frequency, PSoC Creator calculates the divider automatically.

□ If you specify a Divider is selected, PSoC Creator uses it as specified.

You can view the clock characteristics for various clocks using the design-wide resources Clock Editor.

Note For PSoC 4/PRoC BLE devices, there is a Use fractional divider check box. If you specify the
Frequency option, selecting the Use fractional divider check box means that PSoC Creator will calculate the
fraction. If you specify the Divider option, this check box provides a manual option for you to specify the
fraction.

4. On the Advanced tab, specify whether or not to synchronize this clock with the MASTER_CLK (synchronize,
by default). This tab is not applicable to PSoC 4/PSoC 6 devices.

See Also:

◼ Design-Wide Resources

◼ Clock Editor

◼ Select Source Clock

◼ Select Source Clock (from Pin)

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 239

Select Source Clock

The Select Source Clock dialog provides a tree view or a table view of the various signals (in alphabetical order) in
your design from which you can select an input signal for a given clock.

To be used as a clock input, a signal must meet all of the following requirements:

◼ The signal must be a digital signal.

◼ If the signal is from a terminal, the terminal must be at the Top Schematic level.

◼ If not at the Top Schematic level, then the signal must not be connected to a schematic terminal.

To Open the Dialog:

You can open this dialog as follows:

◼ From the Configure System Clocks dialog, click the ellipsis button [...] in the Digital Signal clock section.

◼ From the Add/Edit Design-Wide Clock dialog, under Source, choose the "<Select Signal...>" option in the pull
down menu. (For PSoC 4/PRoC BLE devices, you must select Clock Type "Existing.")

Signal Frequency:

This field is used to specify the frequency of the selected signal.

Accuracy:

These fields are used to specify the accuracy of the selected signal. The value is always displayed as a percent,
but can be entered as a % or ppm.

Toolbar:

The toolbar provides expand and collapse commands to show or hide the entire signal tree.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 240

Show Un-named Signals:

Select this check box to show all the signals in your design; de-select to show only named signals.

See Also:

◼ Design-Wide Resources

◼ Clock Editor

◼ Add/Edit Design-Wide Clock

◼ Configure System Clocks

Select Source Clock (from Pin)

The Select Source Clock dialog provides a table view of the various pin signals (in alphabetical order) in your
design from which you can select an input signal for a given clock.

This dialog applies to PSoC 4/PRoC BLE devices only.

To be used as a clock input, a signal must meet be a digital input pin.

To Open the Dialog:

Open this dialog from the Add/Edit Design-Wide Clock dialog.

1. In Clock Type, select "Existing".

2. In Source, choose the "<Select Pin...> option in the pull down menu.

Signal Frequency:

This field is used to specify the frequency of the selected signal.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 241

Accuracy:

These fields are used to specify the accuracy of the selected signal. The value is always displayed as a percent,
but can be entered as a % or ppm.

Toolbar:

The toolbar provides expand and collapse commands to show or hide the entire signal tree.

Table Fields:

The signal table contains all the signals in a table format with the following columns:

Column Description

Name The name of the signal as defined for the pin.

Port The device's pin shown in port form. This also indicates if the pins is unlocked.

Pin The device's pin number for the device to which this signal is assigned.

Alias When applicable, this shows an alternate name defined for a pin.

Show Unlocked Pins:

Select this check box to show any unlocked pins in your design.

See Also:

◼ Design-Wide Resources

◼ Clock Editor

◼ Add/Edit Design-Wide Clock

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 242

MFT Editor (Certain FM Devices Only)

For a certain set of FM devices, the multi-function timer (MFT) is a function block that enables three-phase motor
control. In conjunction with a Programmable Pulse Generator (PPG) and an ADC, the MFT provides a variety of
motor controls. The MFT Editor is a graphic representation that allows you to select and configure various blocks
within the MFT, in order to generate the corresponding PDL code.

To Open the MFT Editor:

Double click the MFT icon in the Design-Wide Resources tree, located in the Source tab of Workspace Explorer.

The <project>.cydwr file opens as a tabbed document in the work area, with the MFT Editor (MFTs tab) displayed
on top.

To Configure One or More Blocks:

Select a block in the diagram or from the drop-down above the properties area.

Use the properties area to configure the selected block(s).

When you build the project, cymft_config.h and cymft_config.c files will be generated if any of the blocks in the MFT
have a Configure property set to true.

MFT Blocks:

An MFT consist of the following blocks:

◼ Free-Run Timer (FRT) Unit – An FRT is a timer function block that outputs counter values for the operational
criteria of the function blocks in the MFT. The MFT employs 3 channels.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 243

◼ Output Compare Unit (OCU) – An OCU is a function block that generates and outputs PWM signals on the
basis of the counter values of the FRT. The OCU employs 6 channels (2 channels × 3 units).

◼ Waveform Generator (WFG) Unit – A WFG is a function block that is located downstream from the OCU and
generates signal waveforms for motor control from OCU output (RT0 to RT5) signals and PPG signals. The
WFG employs 3 channels.

◼ Noise Canceller (NZCL) Unit – An NZCL is a function block that generates DTIF interrupts to the CPU from
external input signal (DTTIX signal) for motor emergency shutdown. The NZCL employs 1 channel.

◼ Input Capture Unit (ICU) – An ICU is a function block that captures the FRT count value and generates an
interrupt in the CPU when a valid edge is detected in an external input pin signal. The ICU employs 4 channels
(2 channels × 2 units).

◼ ADC Start Compare (ADCMP) Unit – An ADCMP is a function block that generates AD conversion start
signals on the basis of the FRT counter value. The ADCMP employs 6 channels.

Interrupt Editor

The Interrupt Editor allows you to change the priority of interrupt service routines (ISRs) in your design. This editor
is part of the design wide resources file, which includes other resources, such as the Clock Editor.

There is difference between non-multi-core devices (PSoC 3/PSoC 4/PSoC 5LP) and multi-core devices (some
PSoC 6).

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

Non-Multi-Core Devices

For most devices, the Interrupt Editor looks similar to the following.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 244

The Interrupt Editor contains a table with the following columns:

◼ Instance Name – The instance name is also used as the ISR name. This property is read-only in the table.

◼ Interrupt Number – This information (interrupt number) will only be available after place-and-route. This
property is read-only in the table.

◼ Priority – This is used to enter the interrupt priority. The valid range is displayed in the header. The smaller the
number, the higher priority.

If changing devices results in an illegal value, then an error icon will be displayed in the instance name cell. An error
will also be placed in the Notice List window.

Multi-Core Devices

For multi-core devices, such as some PSoC 6 devices, there are separate tabs and editors for each core. For non-
multi-core PSoC 6 devices, the System Editor is the same as above.

The Interrupt Editor contains a table with the following columns:

◼ Instance Name – The instance name is also used as the ISR name. This property is read-only in the table.

◼ Interrupt Number – This information (interrupt number) will only be available after place-and-route. This
property is read-only in the table. A deep sleep wakeup capable image is disabled when assigned to a deep
sleep capable location.

◼ Enable [Per Core] – Provides a checkbox to enable an interrupt in a particular core. The priority and vector
values can only be set for cores where the interrupt is enabled. The arrow on the header of this column can be
used to check all/uncheck all.

◼ Priority [Per Core] – This is used to enter the interrupt priority. The valid range is displayed in the header.
Note: smaller numbers equal higher priority.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 245

◼ Vector [Per Core if Applicable] – Some cores do not have enough vectors to support all interrupts on the
device. This column allows mapping an interrupt into a specific location. A deep sleep wake-up capable image
is displayed when assigned to a deep sleep capable location and the interrupt number is also deep sleep
capable.

If changing devices results in an illegal value, then an error icon will be displayed in the instance name cell. An error
will also be placed in the Notice List window.

To Open the Interrupt Editor:

Double click the Interrupts icon in the Design-Wide Resources tree, located in the Source tab of Workspace
Explorer.

The <project>.cydwr file opens as a tabbed document in the work area, with the Interrupt Editor (Interrupts tab)
displayed on top.

To Change Priority:

Enter a value for the appropriate interrupt in the text box.

See Also:

◼ Design-Wide Resources

◼ Interrupt Component Datasheet (open from the Component Catalog)

DMA Editor

The DMA Editor displays all the direct memory access (DMA) Components that have been directly placed in the
design, as well as all the DMA Components “inside” placed Components.

Note The DMA Editor does not display for devices that do not have DMA.

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 246

The DMA Editor consists of a table where each row represents a DMA instance. The table contains the following
columns:

◼ Name – The name of the DMA instance. This property is specified in the Component Configure dialog and is
read-only in the table.

◼ Priority – Specifies or indicates the priority of the DMA.

□ PSoC 3/PSoC 5LP – There is a default value assigned, denoted as “Default <#>”, so that it can be
distinguished from explicitly selecting the default number. Unselected default values will be updated as
the device changes; values explicitly chosen will not. If changing devices results in an illegal value, an
error icon will be displayed in the cell. An error will also be placed in the Notice List window.

□ PSoC 4/PSoC 6 – The priority is specified in the Component Configure dialog. This property is read-
only in the table.

◼ Block Number – PSoC 6 only has up to two DMA blocks and each DMA block consists of up to 16 channels.
This information will only be available after place-and-route. This property is read-only in the table.

◼ Channel Number – This information will only be available after place-and-route. This property is read-only in
the table.

Note If no DMA resources are used in a design, the DMA Editor will display a message to that effect.

To Open the DMA Editor:

Double click the DMA icon in the Design-Wide Resources tree, located in the Source tab of Workspace Explorer.

The <project>.cydwr file opens as a tabbed document in the work area, with the DMA Editor (DMA tab) displayed
on top.

To Change Priority:

For PSoC 3 and PSoC 5LP, click the down arrow on the menu, and select the appropriate Priority value from the
pull-down menu.

For PSoC 4 and PSoC 6, the priority must be set in the DMA Component itself. The DWR simply shows the value
specified in the Component.

To Sort DMA Editor Table:

By default the DMA Editor is sorted in ascending order by the Priority column, with a secondary sort on the
channel number column.

To sort by a different column, click the appropriate column header. There will always be a secondary sort performed
on the channel number column.

To Select/Edit a DMA:

Double-click an entry in the table; PSoC Creator opens the schematic file and highlights the associated DMA
instance, plus it opens the Configure DMA dialog, where you can edit various parameters.

Refer to the appropriate device DMA Component datasheet for more information.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 247

See Also:

◼ Design-Wide Resources

◼ Working with Interrupts

◼ DMA Wizard

◼ Editing Component Parameters

◼ DMA Component datasheet (open from the Component Catalog)

DMA Wizard

The DMA Wizard aids in quick and accurate development of applications that use DMA. The wizard guides you
through the process of defining transaction descriptors. It also generates the necessary C code that you can copy
and paste into your application. The DMA Wizard only works in the context of a design project that contains at least
one DMA Component. If there is no DMA Component in your design, the wizard displays a message to that effect.

The DMA Wizard contains the following steps:

◼ Getting Started (this topic)

◼ Global Settings

◼ Transaction Descriptors

◼ Generated Code

To Open the DMA Wizard:

Select DMA Wizard from the Tools Menu.

The system will analyze your project for DMA Components and open the wizard. If there are no DMA Components
in your design, a message will display stating that you need to open a project with a DMA Component.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 248

Getting Started:

The Getting Started step allows you to select the project and DMA instance for you to configure.

This step contains the following fields:

◼ Project – This lists all the design projects in the currently open workspace that contain DMA Components. By
default the “Active” project is selected if it fits the previous requirements.

◼ DMA – Used to select the channel (DMA Component) to use.

After selecting the appropriate project and instance, click Next > to proceed to the next step.

See Also:

◼ DMA Wizard Global Settings

◼ DMA Wizard Transaction Descriptors

◼ DMA Wizard Generated Code

◼ DMA Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 249

DMA Wizard Global Settings

The Global Settings step is where you configure the global transaction descriptor (TD) settings

This step contains the following settings:

Source:

◼ Source – This can be SRAM, Flash, or EEPROM. It can also be a Component that was created with the ability
to be used with the DMA Wizard. If the selected Component has more than one possible source, a second
drop-down will appear allowing for a more specific selection.

◼ Base Addr – Depending on which PSoC device is used, the contents of the Base Address may or may not be
automatically provided. When not filled in by default, a C expression needs to be provided. This is used to
provide the upper 16 bits of the address for the DMA Channel configuration. If not added, an error icon will
appear. This will not prevent you from continuing with the wizard. It will only generate code that will not compile.

Destination:

◼ Destination – This can be SRAM or a Component that was created with the ability to be used with the DMA
Wizard. If the selected Component has more than one possible destination, a second drop-down will appear
allowing for a more specific selection.

◼ Base Addr – Depending on which PSoC device is used, the contents of the Base Address may or may not be
automatically provided. When not filled in by default, a C expression needs to be provided. This is used to
provide the upper 16 bits of the address for the DMA Channel configuration. If not added an error icon will
appear. This will not prevent you from continuing with the wizard. It will only generate code that will not compile.

Set Manually:

The following fields are defined automatically. To set these manually, select the Set Manually check box.

◼ Bytes per Burst – Allows you to set the number of bytes to transfer in a single burst. This value is calculated to
be the maximum value that is supported by both the source and the destination. To the right of this field the
range of legal values for the current source and destination is displayed. If you enter an invalid value or if there
is no legal value, an error icon will appear next to the field. This will not prevent you from continuing with the
wizard. It will only generate code that will not compile.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 250

◼ Each Burst Requires a Request – Allows you to set whether or not each burst requires a request before it is
sent. The value is automatically calculated based on the selected source and destination.

Transaction Descriptors:

◼ Number of TDs – Specifies the number of transaction descriptors to create (between 1 and 128).

◼ Single Chain or Loop – This determines what the Next TD will be for the last TD entered. If single chain the
Next TD will be END. If Loop it will loop back to the first TD.

After configuring the appropriate settings, click Next > to proceed to the next step.

See Also:

◼ DMA Wizard

◼ DMA Wizard Transaction Descriptors

◼ DMA Wizard Generated Code

◼ DMA Editor

DMA Wizard Transaction Descriptors

The Transaction Descriptors step is where you configure settings for each individual transaction descriptor (TD).

This step contains the following fields:

Field Description

TD# Displays the logical Transaction Descriptor number. It is used in conjunction with Next TD.

Endian Enables 2- or 4-byte endian byte swapping. When set to 2 or 4, the Bytes per Burst setting must be set
as a multiple of the endian selection. An error will be added to the cell if this is not the case. This will not
prevent you from continuing with the wizard. It will only generate code that will not compile.

Enable trq Enables terminating this TD on a rising edge of the trq signal.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 251

Field Description

Enable nrq Enables the generation of the nrq signal when the TD completes.

Length The length in bytes for this TD (0 to 4095). This field is a C expression that is evaluated at run time. If
endian swapping is enabled, the length must be a multiple of endian swap size. An error will be added
to the cell if this is not the case. This will not prevent you from continuing with the wizard. It will only
generate code that will not compile.

Source The lower 16-bit source address for the DMA transfer. This field is a C expression that is evaluated at
run time to configure the TD. It is combined with the upper 16-bit base address provided on the Global
Settings page. If a Component is selected as the source, this field may be a drop-down list of
addresses. In any case, the cell is editable. If empty, an error icon will be added to the cell. This will not
prevent you from continuing with the wizard. It will only generate code that will not compile.

Inc (Source) Enables incrementing of the Source address as the DMA progresses through the specified number of
bytes.

Destination The lower 16-bit destination address for the DMA transfer. This field is a C expression that is evaluated
at run time to configure the TD. It is combined with the upper 16-bit base address provided on the
Global Settings page. If a Component is selected as the source, this field may be a drop-down list of
addresses. In any case, the cell is editable. If empty, an error icon will be added to the cell. This will not
prevent you from continuing with the wizard. It will only generate code that will not compile.

Inc
(Destination)

Enables incrementing of the Destination address as the DMA progresses through the specified number
of bytes.

Auto Next Specifies whether or not to automatically execute the next TD once this TD completes without requiring
another request.

Next TD Specifies the next logical TD in the chain of TDs. Set to END if this TD chain is complete with this TD.

The Reset to Defaults button will reset all the values in the table to be their default, calculated values.

After configuring the appropriate settings, click Next > to proceed to the next step.

See Also:

◼ DMA Wizard

◼ DMA Wizard Global Settings

◼ DMA Wizard Generated Code

◼ DMA Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 252

DMA Wizard Generated Code

The Generated Code step is where the code is displayed for you to copy and paste into your design.

The Copy to Clipboard button adds the code to the clipboard. You can also use standard keyboard shortcuts and
the right-click menu, as needed.

Note If any errors were ignored in the previous steps, an error icon will display reminding you that the code will not
work.

See Also:

◼ DMA Wizard

◼ DMA Wizard Global Settings

◼ DMA Wizard Transaction Descriptors

◼ DMA Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 253

System Editor

The System Editor is used to edit various system properties. It contains a table with different categories of
properties, such as Configuration, Programming/Debugging, and Operating Conditions. The available categories
change based on your design.

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

To Open the System Editor:

Double click the System icon in the Design-Wide Resources tree, located in the Source tab of Workspace Explorer.

The <project>.cydwr file opens as a tabbed document in the work area, with the System Editor (System tab)
displayed on top.

To Edit a Property:

Click in the Value column for a property to edit.

Different properties have different methods of editing. Some properties have a check box to toggle on and off, some
have a pull down menu to choose an option, and some have a text field in which to enter a value.

If you enter an invalid value, an error will display to indicate the invalid value and how you might correct the
problem.

Property Descriptions:

Under each category, there are one or more rows of properties you can edit. When you highlight a particular
property, its description displays in the text box at the bottom of the editor. The table contains the following columns:

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 254

◼ Option – This column displays the name of each row/level in the hierarchy.

◼ Value – This column displays the current value of a setting and allows you to change it when applicable.

The table contains the following options:

Option Description Note

Configuration

Device Configuration
Mode

This property controls how the device will be configured pre-main,
such that it reflects the design. The options available are
Compressed, UnCompressed, and DMA. (The DMA option applies
to PSoC 3 and PSoC 5LP devices only.)

• Compressed results in a smaller amount of FLASH being
consumed but requires more time after a reset to get to main.

• UnCompressed will use the same amount of FLASH as DMA,
but will perform a software copy of configuration data.

• DMA will result in more FLASH being consumed for
configuration, but will require less time to get to the user-defined
main function.

Not applicable to FM0+
devices.

Enable Error
Correcting Code (ECC)

If true, the ECC will be used to detect and correct errors in the
FLASH memory. Selecting this option hides the "Store Configuration
Data in ECC Memory" option.

WARNING Exercise caution changing this setting during
development. Excessive re-programming of this setting may cause
unexpected results.

Applies to PSoC 3 and PSoC
5LP devices only.

Store Configuration
Data in ECC Memory

If this option is enabled, device configuration data will be stored in
ECC memory to reduce main FLASH memory usage. Error
correction may not be used when this option is enabled.

Applies to PSoC 3 and PSoC
5LP devices only.

Instruction Cache
Enabled

If true, the device will write data coming from the FLASH to the
instruction cache SRAM.

Applies to PSoC 3 and PSoC
5LP devices only.

Enable Fast IMO
During Startup

If true, the fast IMO will be used. This configuration balances the
need for rapid boot and configuration against peak power
consumption. If true, the IMO will run at the faster speed of 48 MHz
instead of 12 MHz during device startup.

This configuration balances the need for rapid boot and
configuration against peak power consumption. If true, the IMO will
run at the faster speed of 48 MHz instead of 12 MHz during device
startup and between CyPmSaveClocks() and CyPmRestoreClocks()
functions calls. See System Reference Guide for more information

about these functions.

WARNING Exercise caution changing this setting during
development. Excessive re-programming of this setting may cause
unexpected results.

Applies to PSoC 3 and PSoC
5LP devices only.

Clear SRAM During
Startup

If enabled, writes zeros to SRAM before initializing variables. If
disabled, variables that do not have an explicit initializer will not be
initialized to zero. This option should only be disabled if the
application requires a faster startup time and does not contain any
code or libraries that depend on the value of un-initialized variables.

Applies to PSoC 3 devices
only.

Read Accelerator
Enabled

If true, the device will accelerate read operations using cached
values.

Applies to PSoC 4 devices
only.

Unused Bonded IO This option controls how unused bonded pins will be used for
internal analog place and route.

• “Allow but warn” option will allow the analog router to make use
of unused pin switches in the current design, but will give out

warnings on the pins whose switches are used.

Not applicable to FM0+
devices.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 255

Option Description Note

• “Allow with info” option will allow the analog router to make use
of unused pin switches in the current design, and will give out
notes on the pins whose switches are used.

• “Disallowed” option will disallow the analog router to use any of
the unused pin switches in the current design.

Heap Size Defines the number of SRAM bytes to reserve for the Heap space. Applies to PSoC 4 and PSoC
5LP devices only.

Stack Size Defines the number of SRAM bytes to reserve for the Stack space. Applies to PSoC 4 and PSoC
5LP devices only.

Include CMSIS Core
Peripheral Library Files

The CMSIS (Cortex Microcontroller Software Interface Standard)
Core Peripheral Library contains APIs to access core registers and
peripherals. Checking this option will include the APIs from the
current version of the standard in the project. The current version is
tied to the version of the cy_boot Component in your project. Refer
to the System Reference Guide for more information. Deselect the
box and add the files manually if you wish to use a different version
of the standard.

Applies to PSoC 4 and PSoC
5LP devices only.

Programming/Debugging

Chip Protection The different chip protection levels provide limitations on what
resources are accessible by the CPU and Debugger:

• Open: full access

• Protected: no debugging

• Kill: the device can never be reprogrammed

Note:

1. Programming a PSoC 4/PRoC BLE device using PSoC
Creator will set the chip protection to "Open" even it is
selected as "Protected" or "Kill" mode.

2. In order to set the Chip protection to "Protected" or "Kill"
mode, select the appropriate mode in PSoC Creator and
program the PSoC 4/PRoC BLE device using PSoC
Programmer after enabling "Chip Lock" feature in PSoC
Programmer Options > Programmer Options.

Applies to PSoC 4 devices
only.

Debug Select Sets the Port 1 preferred program/debug interface (JTAG or SWD)
that the chip enables by default for use after power up or reset.

• For PSoC 4/FM0+, JTAG is not available.

• Setting to GPIO frees the pins for use as GPIOs but does not
completely disable the debug interface for flash protection
purposes. "Enable Device Protection" must be set for this
purpose, or "Chip Protection" must be set to Open.

Note This setting must match how you intend to program your
device in a 3rd party IDE. See also Integrating into 3rd Party IDEs.

For more information about programming and debugging options
see the device datasheet or Technical Reference Manual (TRM).

WARNING Exercise caution changing this setting during
development. Excessive re-programming of this setting may cause
unexpected results.

PSoC 3/PSoC 5LP/PSoC 6
options include:

• 5-wire JTAG

• 4-wire JTAG

• SWD (serial wire debug)

• SWD+SWV (serial wire
debug and viewer)

• GPIO

PSoC 4/FM0+ options
include:

• SWD (serial wire debug)

• GPIO

Enable Device
Protection

When completing a production design, you may select the Enable
Device Protection feature. Enabling this feature causes the part to

Applies to PSoC 3 and PSoC
5LP devices only.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 256

Option Description Note

disable debugging at run-time. It is still possible to connect a
programmer, but debugging will be disabled. It is not recommended
to enable it for multi-device JTAG chains, since it may break the
chain.

Note This setting does not affect flash protection. It is only used to
disable debug access to the PSoC 3 or PSoC 5LP device.

Embedded Trace
(ETM)

Enables the Cortex ETM Trace capability for outputting real-time
debug information while the processor is running. This will reserve
the trace pins as debug pins. When not used for trace, PSoC

Creator makes the pins available as a GPIO.

Applies to PSoC 5LP and
PSoC 6 devices only.

Use Optional XRES Enables hardware reset via the optional XRES pin (P1[2]). This is in
addition to the dedicated XRES pin on this device.

WARNING Exercise caution changing this setting during
development. Excessive (over 1000 times) re-programming of this

setting may cause the selection to become permanent.

Applies to PSoC 3 and PSoC
5LP devices with more than

48 pins.

Enable XRES Enables hardware reset via the optional XRES pin (P1[2]). This
device does not have a dedicated XRES pin, if disabled it is not
possible to program the part without a power cycle or to issue a hard
reset from the debugger.

By default, the reset is done by toggling the XRES pin. The power
cycle method is highly dependent on the design of your board, and
may not be possible. If a XRES pin is not available and the Power

Cycle does not work, the part cannot be reprogrammed.

To ensure that the device can be programmed, this option should be
enabled.

WARNING Exercise caution changing this setting during
development. Excessive (over 1000 times) re-programming of this
setting may cause the selection to become permanent.

Applies to PSoC 3 devices
with 48 pins or less.

Operating Conditions

These settings specify the various voltages and temperature ranges in which the device is used. Various
Components in the device use these values for configuration information, so you should use correct values. There
are numerous ways these settings can affect your design, including:

◼ The USB_Start function has an option to use Vddd to set the internal USB regulators for enumeration.

◼ The ADC_CountsTo_Volts() API uses these voltages for the Vssa to Vdda Input Range.

◼ The SAR_ADC Component uses the Vdda voltage setting for configuring the Input Range and Reference.

◼ The SC block Components (TIA, PGA, PGA_Inv, Sample_Hold, Mixer) enable boost clocks when the Vdda is
set below 2.7 V.

◼ The VDAC8 Component generates a note explaining that the range of the VDAC is limited to the range from 0
V to Vdda.

◼ Static Timing Analysis uses smaller timing delays in the UDBs if Vddd is >= 1.8 V (and you selected the 0 °C –
85 °C Temperature Range). IO delays are smaller if the voltage (VddioN) is 3.3 V or higher.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 257

Option Description Note

Pin Voltages
(VDDA, VDDD,
VDDIO<X>, VDDR,
VBUS, etc.)

Individual options are available for each power pin on the selected
device. The input value indicates the input voltage on the
corresponding pin.

The exact list of options will
change based on the
selected device.

External PMIC Output This option provides the ability to enable an external PMIC input to
provide VDDD power to the device. Options include:

• Disabled

• Enabled

Applies to PSoC 6 devices
only.

Temperature Range Specifies the temperature range at which the device will be
operated.

PSoC devices operate reliably across a wide temperature range. If
your design will only ever run at typical room temperatures,
however, the timing constraints are more easily satisfied. Selecting
the narrower temperature range for your application helps the tool to
find timing-compliant routing solutions.

Available selections are:

• 0C – 85C (PSoC 3 and
PSoC 5LP only)

• -40C – 85C (all devices)

Variable VDDA Option to create low voltage analog boost clock. Useful to allow low
voltage boost when Vdda varies over time such as a battery
powered application.

Not applicable to FM0+
devices.

Power Mode This option provides the ability to switch between using the LDO
Linear Regulator or the SMIO Buck to supply VCCD.

Note There is no hardware protection when using the SMIO Buck.

No configuration available for Ultra Low Power (ULP) devices.

Applies to PSoC 6 devices
only.

Note: The voltage values are used by certain APIs (for example, ADC_CountsTo_Volts), as well as Component
Configure dialogs (for example, the ADC_DelSig Component uses this Vdda information for showing input range if
Vref is selected to Vdda/4 or Vdda/3). Although it is recommended to update the actual Vddx voltages in the DWR
System Editor, the device will not get damaged if a different valid (as per the datasheet) supply voltage is given.

Analog Reference

For some devices, there is an additional section with the following options:

Option Description Note

Reference Source This option specifies the system wide programmable reference
source. Available selections are:

• Bandgap (1.20 V)

• VDDA (3.30 V)

Applies to PSoC Analog
Coprocessor and PSoC
4100PS series devices only.

Bandgap Reference
Gain

This option controls the Bandgap multiplier used by all
programmable references.Available selections are:

• 1x (1.20 V)

• 2x (2.40 V)

Applies to PSoC Analog
Coprocessor and PSoC

4100PS series devices only.

Voltage Reference
Value

This option specifies the system wide programmable reference
voltage. Voltage options are based on 1/16th increments of VDDA
and Bandgap * Reference Gain. This voltage is accessible by the
voltage reference Component. Different selections ranging from 0.08

V to 1.20 V.

Applies to PSoC Analog
Coprocessor and PSoC
4100PS series devices only.

VDDA references
active during

DeepSleep

This option specifies whether or not VDDA-based references will
remain active when the chip is in Deep Sleep. References which are
based off of the bandgap reference (VBGR) are never active in
DeepSleep.

Applies to PSoC Analog
Coprocessor and PSoC

4100PS series devices only.

Bandgap Value This option specifies the analog reference value. The system
reference requires less power but provides lower performance than

Applies to PSoC 6 devices
only.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 258

Option Description Note

the local reference. This voltage is accessible by the voltage

reference Component. Options: (System, Local, External Pin)

Opamp Reference
Current

Selects the reference current available to the opamps. Selecting a
lower value will reduce power consumption but will result in lower

performance. See the opamp component datasheet for more details.

Applies to PSoC 6 devices
only.

Available in DeepSleep This option specifies whether or not the bandgap reference will
remain active when the chip is in Deep Sleep.

Applies to PSoC 6 devices
only.

See Also:

◼ Design-Wide Resources

Directives Editor

The Directives Editor is used to add, remove, and edit directives. See Directives for more information about the
directives available in PSoC Creator.

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

To Open the Directives Editor:

Double click the Directives icon in the Design-Wide Resources tree, located in the Source tab of Workspace
Explorer.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 259

The <project>.cydwr file opens as a tabbed document in the work area, with the Directives Editor (Directives tab)
displayed on top.

To Add a Directive:

Click the Add Directive button on the top left of the editor.

To Edit a Directive:

Enter a Component/Signal name, Directive Type, and Directive Value as appropriate in each column.

◼ Component (Signal) Name - Use this column to enter the signal or Component name. Currently there is no
validation check for this column, except you must enter a name in this column if you enter a value in the
Directive Value column.

Note The Component Name for this field is the fully elaborated name of the Component as specified in the
<project>.rpt file after a successful build (e.g, "\Counter_1:CounterUDB:sC8:counterdp:u0\"). You can find
the <project>.rpt file under the Output tab in the Workspace Explorer.

◼ Directive Type - Use this column to select a valid directive type from the drop down list. The initial value for this
column is INVALID. If you enter a value in the Directive Value column, you must change the Directive Type to
the appropriate type. Valid types include:

□ ForceSignal: Maps to the 'placement_force' directive format used for arbitrary logic. Allows the
assignment of a UDB PLD location to the output signal of a block of logic to tell the placer to put that
output in that UDB PLD. This generates a rule of the form:

 attribute placement_force of [signal name] : signal is "[UDB spec]"

 where [UDB spec] : U(x,y)[A|B] or U(x,y,[A|B])i

□ ForceComponentUDB: Maps to the 'placement_force' directive format for UDB Components. Assigns
the location of UDB Component listed to the location specified. This generates a rule of the form:

 attribute placement_force of [Component name] : label is "[UDB spec]"

 where [UDB spec]: U(3,2)

□ ForceComponentFixed: Maps to the 'placement_force' directive format for Fixed Function blocks.
Assigned the location of the fixed block listed to the location specified. This generates a rule of the
form:

 attribute placement_force of [Component name] : label is "[fixed spec]"

 where [fixed spec] : F([fixed block],i)

 where [fixed block] : CAN, Comparator, I2C, SC, Timer, VIDAC, ...

□ Group: Maps to the 'placement_group' directive format. Groups the specified signal name into the
specified group. This generates a rule of the form:

 attribute placement_group of [signal name] : signal is "[group name]"

◼ Directive Value - Use this column to specify the value for the directive, based on the selected Directive Type.
Each type has certain rules for its value. If the value does not follow the rules of the type, an error icon will
display next to the text (for example, see signal_5 in the image). Mouse over the error icon to show the reason
of the error.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 260

To Delete a Directive:

Click a row in the table and click the Delete Directive button.

See Also:

◼ Design-Wide Resources

◼ Directives

Flash Security Editor

The Flash Security Editor allows you to control the read/write access to the flash memory. This feature is designed
to secure proprietary code.

Flash rows are displayed as a table where each editable cell in the table represents a single row of flash
(64/128/256 bytes depending on the PSoC 4 device; 256 bytes for PSoC 3 and PSoC 5LP devices). Each row of
flash can have its protection level independently set.

Note This feature is not applicable to PSoC 6 devices, for which flash security is handled by the MPU/SMPU/PPU
as part of the firmware.

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

Protection Levels:

The tool offers four levels of protection, as follows. You can assign one of four protection levels (two levels for
PSoC 4) to each row; see the table below. flash protection levels can only be changed by performing a complete

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 261

flash erase. For more information on PSoC flash and security features, refer to a device datasheet or Technical
Reference Manual (TRM).

◼ Unprotected (U) – No protection.

◼ Factory Upgrade (F) – Read protected. No device external to the PSoC device can read a flash block that is
read-protected. The SPC Read commands cannot be used to read a block that is read protected. Only the
processor and the PHUB can access a block of flash that is read protected. (This option is not available for
PSoC 4 devices.)

◼ Field Upgrade (R) – External write protection. No device external to the PSoC device can erase or write a row
of flash that is external write protected. Includes all Read Protect restrictions. (This option is not available for
PSoC 4 devices.)

◼ Full Protection (W) – Fully protected. Neither the PSoC CPU nor any device external to PSoC can erase or
write a block of flash that is fully protected. Includes all protections from lower levels of flash data protection.
This level is used when a block of flash should never be modified by an internal process or external device.

 PSoC 3 and PSoC 5LP PSoC 4

Protection
Setting

Allowed Not Allowed
Allowed Not Allowed

Unprotected External read and
write,
Internal read and write

– External read and write,
Internal read and write

–

Factory Upgrade External write,
internal read and write

External read n/a n/a

Field Upgrade Internal read and write External read and
write

n/a n/a

Full Protection Internal read External read and
write,

Internal write

Internal read, External
read

External write,
Internal write (see Note

below)

Note To protect the PSoC 4 device from external read operations, you must change the device protection settings
to “Protected” in the DWR System Settings. You must also enable “Chip Lock” from Options > Programmer
Options before programming the device for these settings to take effect. You must use the PSoC Programmer tool
to program the device.

To protect the bootloader portion of flash, set the corresponding rows to “full protection.” PSoC Creator lets you
easily select the protection setting for each row.

Note The Full Protection level cannot be used on the last two rows of flash for Bootloader or Bootloadable projects.
These rows are used for application metadata and require internal write access.

To Open the Flash Security Editor:

Double click the Flash Security icon in the Design-Wide Resources tree, located in the Source tab of Workspace
Explorer.

The <project>.cydwr file opens as a tabbed document in the work area, with the Flash Security Editor (Flash
Security tab) displayed on top.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 262

To Change a Single Row of Flash:

To change the protection level on a single flash row, click the corresponding cell in the table and make your
selection from the drop-down list.

To Change Multiple Rows of Flash:

To change the protection level on multiple rows of consecutive flash at once, proceed as follows:

1. Select your starting and ending flash row numbers using the fields provided at the top of the editor.

By default the starting and ending values are set to include all rows of flash.

2. Select your desired protection level from the drop-down list located to the right of the previous fields.

3. Click the Set button.

Generated Hex (PSoC 3 Only):

There are two generated hex files with flash security levels in them. During a build, the flash protection data is
gathered from the CyFlashSecurityModel and outputted as a hex file (located at
Generated_Source/[Architecture]/protect.hex). This data is then combined into the overall hex file for the project
(located at [Platform (DP8051-Keil_Generic/Debug, …)]/[Configuration (Debug, Release)]/[Prj Name].hex).

See Also:

◼ Design-Wide Resources

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 263

EEPROM Editor

The EEPROM Editor allows you to set up EEPROM data from PSoC Creator without requiring any code to run in
the PSoC application. It is a grid that displays the EEPROM memory according to the display options. Each cell is
editable, with a default value of 0xFF.

Note PSoC Creator collects DWR information dynamically. Depending on the complexity of the design, it may take
a few seconds to update the DWR information.

The left column shows the base addresses. The top row shows the offsets for each column. The ASCII display on
the right is similar to that shown in the Memory Window.

To Open the EEPROM Editor:

Double click the EEPROM icon in the Design-Wide Resources tree, located in the Source tab of Workspace
Explorer.

The <project>.cydwr file opens as a tabbed document in the work area, with the EEPROM Editor (EEPROM tab)
displayed on top.

To Change Single Cell Value:

To change the value of a single cell, click in the cell and either type the desired value or use the menu to select a
value from the list.

To Change Multiple Cell Values:

To change the value of multiple cells, use fields below the grid. Enter or select the appropriate values for From
address, to, and Value. The click Set.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 264

To Import/Export Data:

You can write a sequence of bytes in an external editor in comma-separated value (CSV) format, save it as a CSV
file, and import the file into PSoC Creator. Click Import, navigate to the CSV file location, select it and click Open.
The changes are applied in the EEPROM Editor.

You can also make edits in the EEPROM Editor, export the data as a CSV file, then open the file in an external
editor. Click Export, navigate to the location to save the file, and click Save.

To Include EEPROM Image in Hex file:

Select this check box to include the EEPROM image in the hex file. If selected, programming time increases. The
default is not selected.

Note If this check box is not selected, there is no functional change to your project.

To Change the Display:

The following settings are stored in the user configuration file and change the display of all projects for that user.
These values change the display only; they do not modify the actual values of the data.

◼ Use the View pull-down menu to change the size of the data displayed in the editor: 8-bit, 16-bit, or 32-bit.

◼ Use the Format pull-down menu to change the format of the data displayed in the editor: Hex, Signed Int,
Unsigned Int.

Bootloader Support:

You can use the EEPROM Editor on any type of project. However, you cannot use it for both bootloader and
bootloadable. PSoC Creator will indicate an error if such a condition occurs.

For multi-application bootloaders, the EEPROM is equally divided amongst all bootloadables.

Rules:

1. If you have set up a bootloader/multi-application bootloader project to use EEPROM, then no bootloadable
project using that bootloader is allowed to use EEPROM (the DWR in the bootloadable project will not allow
you to turn on EEPROM for that project).

2. If the bootloader is not using EEPROM and it is not a multi-application bootloader, then any bootloadable
projects using that bootloader may enable EEPROM in their DWR and use the full EEPROM memory region.

3. If you have a multi-application bootloader and that bootloader is not using EEPROM, then bootloadables using
that bootloader may use EEPROM. The EEPROM will be divided evenly amongst the bootloadable .cyacd files
(e.g. *_1.cyacd has the first half of EEPROM and *_2.cyacd has the upper half of the EEPROM data).

See Also:

◼ Design-Wide Resources

◼ Memory Window

◼ Bootloader/Bootloadable Component datasheet (available from the Component Catalog)

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 265

Symbol Editor

The Symbol Editor allows you to create and edit Components that can then be used in your designs.

The process of creating Components can be complex. These topics are provided as a help if you press [F1] for the
various dialogs you may encounter. For more in depth discussion regarding creating Components, refer to the
Component Author Guide.

The main topics of the Symbol Editor include:

◼ symbol sheet – the canvas on which you draw Components

◼ Design Elements Palette

◼ Symbol Editor Context Menus – commands specific to the Symbol Editor

◼ Common toolbars – commands common to the design entry tools

This section also contains various topics related to working with the Symbol Editor:

◼ Creating a Symbol

◼ Symbol Wizard

◼ Symbol Editor Context Menus

◼ Working with Component Terminals

◼ Defining Catalog Placement

◼ Creating Symbol Parameters

◼ Creating Parameter Validators

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 266

Creating a Symbol

Creating a symbol is only one aspect of creating a Component. The process of creating Components can be
complex. For more in depth discussion regarding creating Components, refer to the Component Author Guide.

You create a symbol within a project. So first, either create a new project or open an existing one.

1. Once you have opened a project, select the Components tab in the Workspace Explorer.

2. Right-click on a Component or project, and select Add Component Item...

You can also select this option from the Project menu.

The Add Component Item dialog displays.

3. Select the Empty Symbol icon.

4. Enter a Component name.

5. Select the Destination.

Note This option is only available if you open this dialog from the Project menu.

6. Click Create New.

The symbol is added to the existing Component or a new Component is created with the new symbol.

See Also:

◼ Component Author Guide

◼ Library Component Project

◼ Adding a Component Item

◼ Symbol Wizard

◼ Create Symbol from Schematic

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 267

Symbol Wizard

The Symbol Wizard allows you to create a basic symbol and specify the names and types of terminals. The wizard
also offers a preview of the symbol, as well as the option to change the title color.

Creating a symbol is only one aspect of creating a Component. The process of creating Components can be
complex. For more in depth discussion regarding creating Components, refer to the Component Author Guide.

To Open the Symbol Wizard:

1. Open a project (or create a new project) and select the Components tab in the Workspace Explorer.

2. Right-click on a Component or project, and select Add Component Item... to open the Add Component Item
dialog.

3. Select the Symbol Wizard icon and click Create New.

To Add a New Terminal:

Enter the Terminal name and select a Type for each Component terminal; create separate terminals using different
rows.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 268

To Add a Symbol Label:

Use the Symbol label text box to add optional text or an expression to be displayed under the symbol.

Note This field is normally used to enter an expression to display the value of a single parameter for the
Component in the symbol (for example, Param name = `=$ParamName`). See Using Text Substitution for more
information about expressions.

To Delete a Terminal:

Double-click the row header cell for a terminal. A dialog will display to confirm the deletion.

You can also select a row and click the Delete button.

To Change Terminal Order:

Select a row and use the Up Arrow and Down Arrow buttons to rearrange the terminal order in the table. This will
also affect how the terminals will appear on the symbol, as shown in the preview.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 269

To Change the Title Color:

To change the color of the symbol title, select a color from the Title color pull-down menu. There are several pre-
defined Cypress colors. You may also choose a custom color.

See Also:

◼ Component Author Guide

◼ Library Component Project

◼ Adding a Component Item

◼ Creating a Symbol

◼ Create Symbol from Schematic

◼ Using Text Substitution

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 270

Symbol Editor Context Menus

The Symbol Editor contains various commands available on right-click – or context – menus. The commands
available will vary depending on whether you right-click on the canvas itself or on a Component/element. The
following are the commands available:

On Canvas:

◼ Paste – Same as command from the Standard Toolbar.

◼ Select All – Selects everything on the canvas.

◼ Zoom – Same as zoom commands from the View Menu.

◼ Symbol Parameters – Opens the Parameters Definition dialog. See
Creating Symbol Parameters.

◼ Generate Verilog – Generates a Verilog file based on the Symbol's
definition. See Generate Verilog.

◼ Properties – Opens the Properties dialog.

On Selected Object(s):

◼ Cut, Copy, Paste, Delete – Same as commands from the Standard
Toolbar.

◼ Select All – Selects everything on the canvas.

◼ Zoom – Same as zoom commands from the View Menu.

◼ Shape – Same as shape commands from the Common Design Entry
Toolbars.

◼ Select – Allows you to select a specific object when two or more objects
are drawn on top of each other.

◼ Align – When two or more objects are selected, this command allows you
to align selected shapes: left, right center, top middle, and bottom.

◼ Edit Name and Width – For terminals only, opens Terminal Name dialog.

◼ Format Shape – Opens the Format Shape dialog to change various
characteristics for the selected shape(s).

◼ Properties – For terminals only, opens the Properties dialog.

See Also:

◼ Symbol Editor

◼ Common Design Entry Toolbars

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 271

◼ Design Elements Palette

◼ Standard Toolbar

Adding a Component Item

The primary purpose of the Add Component Item dialog is to add new items to a Component. It can also be used to
create a new Component within a library project. Adding Component items and creating Components can be a
complex set of instructions and procedures. This topic is provided as a help for this dialog. For more in depth
discussion regarding creating Components, refer to the Component Author Guide.

The dialog provides templates of the different types of items you can add to a Component. The options available
will vary depending on the type of item you select and whether you are adding an item to a Component or creating
a new Component.

To Open the Dialog:

In the Workspace Explorer, under the Components tab, right-click on a Component or project or select Add

Component Item... .

◼ Select a Component to add a new Component item within the Component.

◼ Select a project to create a new Component within the project.

You can also use the Project menu to open this dialog; however, the Destination field does not get selected
automatically as it does for the context menu.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 272

To Use the Dialog:

The Add Component Item dialog contains the following sections:

Templates

The Templates area displays icons for the different types of available Component items. Currently the available
templates include:

◼ Symbol – Contains the symbol templates to create an empty symbol or to use the Symbol Wizard. See also
Creating a Symbol.

◼ Implementation – Contains the implementation templates. See also Creating a New Schematic.

◼ API – Contains the API templates to create C, header, and assembly files.

◼ Library – Contains a set of library templates to allow Component authors to add libraries for different compiler
tool-chains and configurations (DEBUG/RELEASE).

◼ Misc – Contains miscellaneous templates to create a documentation file, Control File, XML file or any other
type of miscellaneous file.

Beside each template, there is a brief description for each Component item.

Target generic device

The Target generic device check box disables/enables the Family, Series, and Device pull-down menus. These
options determine where in the project hierarchy the new item will be stored. This field is only available for certain
types of Component items, such as implementations, API files, etc. The check box will become active for different
template items you select.

◼ Select the Target generic device check box to create the selected Component item at the top-level of the
Component and disable the other options; de-select to enable them.

◼ Choose a Family to create the Component item in a subfolder for a family (e.g., PSoC3, PSoC4, or PSoC5.).

◼ Choose a device Series to create the Component item in a subfolder for a series of devices (e.g., CY8C32,
PSoC 4000, PSoC 4200 BLE, CY8C52LP, etc.).

◼ Choose a specific Device part number to create the Component item in a subfolder for a specific device.

Component Name

The Component Name field allows you to specify a name for the Component when you create a new Component
for a project. This field is disabled when adding Component items at the Component level.

Item Name

The Item Name field allows you to specify a name for some Component items. The following Component items
derive their name from the Component Name:

◼ Symbol

◼ Schematic

◼ Control file

◼ Verilog file

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 273

Configuration

The Configuration field only applies to Library template files. It allows you to specify if the library is for debug
mode, release mode, or both.

Destination

The Destination field is only active when you open this dialog using the Add Component Item command from the
Project menu. This field is a pull-down menu that allows you to select the project or Component to which you want
to add the Component item. Notice that if you select a project, the Component Name field becomes active.
Conversely, if you select a Component, the Component Name field becomes inactive.

Create New vs. Add Existing

The Create New button displays by default. If you click this button, PSoC Creator will create a new file of the
selected type and it to the Component.

This button contains a pull-down toggle that switches it to Add Existing. If you switch it, a navigation button
[...] becomes active to select an existing file of the selected type. Then when you click the Add Existing button, the
selected file will be copied to the Component folder and added to the Component. Files may be renamed during the
copy process to ensure they comply with file naming restrictions imposed on certain file types.

See Also:

◼ Component Author Guide

◼ Library Component Project

◼ Symbol Wizard

◼ Create Symbol from Schematic

◼ Workspace Explorer

◼ Creating a New Schematic

◼ Creating a Symbol

Working with Component Terminals

The terminal tools in the Design Elements Palette for schematics allow you to draw digital input, output, and inout,
as well as analog and external terminals.

Use Component terminals when you are creating a symbol in the Symbol Editor, as part of creating a Component.
For more information about creating Components, refer to the Component Author Guide.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 274

To Place a Terminal:

Select the appropriate Terminal tool from the Design Elements Palette and click on the canvas. The Terminal
Name dialog will display.

To Rename a Terminal:

Right-click a terminal and select Edit Terminal Name.

The Terminal Name dialog will display.

Use the dialog to specify the terminal name and/or indices, as appropriate.

To Show/Hide a Terminal Label:

1. Right click the terminal and select Format Shape to open the Format Shape dialog.

2. Change the Show Label property to true/false to show/hide the label, respectively.

3. Click OK.

To Delete a Terminal:

Select the terminal and press [Delete] or click .

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 275

See Also:

◼ Component Author Guide

◼ Symbol Editor

◼ Design Elements Palette

◼ Terminal Name dialog

◼ Format Shape dialog

Defining Catalog Placement

As part of creating a Component, you can use the Catalog Placement dialog to define how symbols are displayed
in the Component Catalog under various trees and tabs.

The process of creating Components can be complex. This topic is provided as a help if you press [F1] for this
dialog. For more in depth discussion regarding creating Components, refer to the Component Author Guide.

To Open the Catalog Placement Dialog:

1. Right-click on the symbol canvas and select Properties.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 276

The Properties dialog displays.

2. Click the [...] button in the Doc.CatalogPlacement field to open the Catalog Placement dialog.

To Define Catalog Placement:

Use the following syntax:

t/x/x/x/x/d

Each Component of the syntax has the following meaning:

◼ t – The tab name. The tab order displayed in the Component Catalog is alphabetical and case insensitive.

◼ x – A node in the tree under the tab. You must have at least one node.

◼ d – The display name for the symbol (optional).

If you do not specify the display name, the symbol name will be used instead; however, you must use the t/x/

syntax.

If you do not define the Doc.CatalogPlacement property for a given symbol, it will display by default under the
Default tab.

If you want to show the symbol in multiple catalog trees, enter separate syntax strings in different rows of the
dialog.

See Also:

◼ Component Author Guide

◼ Library Component Project

◼ Component Catalog

◼ Properties dialog

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 277

Creating Symbol Parameters

When you create a Component, you can create one or more parameter collections for your symbol using the
Parameters Definition dialog.

The dialog presents the parameters in the same order (tabs, categories, and parameters) that they will be
presented to the user when editing the instance, with a few minor exceptions related to visibility. All parameters are
visible in this dialog no matter what the visibility is set to.

◼ If a parameter is set to not be visible in the instance Configure dialog, it will not be displayed to the user when
configuring the instance.

◼ If there are no visible parameters in a tab or category, that tab or category will not be displayed.

◼ If there is only a single visible category on a tab, the category will not be displayed; instead the parameters will
be displayed without hierarchy.

The process of creating Components can be complex. This topic is provided as a help if you press [F1] for this
dialog. For more in depth discussion regarding creating Components, refer to the Component Author Guide.

To Open the Dialog:

Right-click on the symbol canvas and select the Symbol Parameters icon .

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 278

To Create Parameters:

For each symbol, you can create any number of parameters.

1. Click the Add button to create a new parameter definition.

2. For each parameter, define the properties on the right side of the dialog.

Note Multiple parameters can have their properties edited at once by using [Ctrl] or [Shift] while clicking in the
table to select multiple rows at once.

3. To add another parameter, repeat the process or use the Copy/Paste buttons.

To Create Enumerated Types:

Click the Types... button to open the Enumeration Types dialog.

See Enumeration Types for more information.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 279

See Also:

◼ Component Author Guide

◼ Symbol Editor

◼ Enumeration Types

Creating Parameter Validators

When you create a Component, you can create one or more parameter validators using the Parameter Validators
dialog.

The process of creating Components can be complex. This topic is provided as a help if you press [F1] for this
dialog. For more in depth discussion regarding creating Components, refer to the Component Author Guide.

To Open the Parameter Validators Dialog:

1. On the Parameters Definition dialog, select the parameter for which to add a validator.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 280

2. Then select the Validators field under the Validation section, and click the ellipsis [...] button.

To Add a Validator:

1. Select the message type from the drop down in the first row, either Error, Warning, or Info.

2. Type an expression in the Expression field. Refer to the Component Author Guide.

3. In the Message field, type in the message to display if the validation check is not met.

4. To add another validator, select the message type from the drop down in the next row, and repeat the process.

5. Click OK to close the dialog.

See Also:

◼ Component Author Guide

◼ Symbol Editor

◼ Creating Symbol Parameters

Exporting a Component

After you have finished developing one or more Components, you can export them without providing the entire
project or library. This allows for a library-free distribution method of Components and allows you to more easily
control your own libraries and dependencies.

If you prefer to include the Component as part of a project/library, see Archiving a Workspace/Project.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 281

To Export a Component:

1. In the Workspace Explorer, under the Components tab, right-click on the Component to view the context
menu, and select Export Component.

2. Select Create New Archive... to export it as a new Component archive.

□ This option opens the Save As dialog to save the Component with a default .cycomp file name of
comp_archiveXX, where XX is a number that will increment each time you export a Component.

□ Rename the file as appropriate and select a desired location.

□ Click Save.

3. Select Add to Existing Archive... to update an existing exported Component archive. This option allows you to
update an existing Component, and it allows you to add additional Components to an existing .cycomp file.

□ This option opens the Save As dialog.

□ Navigate to the location of the existing .cycomp file to be updated.

□ Select the .cycomp file and click Save.

The .cycomp file contains all of the files included with the selected Components, and it is used by PSoC Creator
during the Import Component process.

See Also:

◼ Archiving a Workspace/Project

◼ Workspace Explorer

◼ Import Component

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 282

UDB Editor

The Universal Digital Block (UDB) Editor is a graphic tool to create PSoC Components. This simple-to-use editor
provides an approachable way to implement and configure UDB resources.

Note The UDB Editor is not intended to enable 100% of UDB functionality or to make the most optimal designs
possible. Rather, its purpose is to increase your ability to use UDB resources. This editor does not replace the
Datapath Config Tool, which is more of an expert-level tool for working with UDBs. Refer to the Component Author
Guide for more information about the Datapath Config Tool and UDB resources. Refer to the UDB Editor Guide for
more information about the UDB Editor.

The main Components of the UDB Editor include:

◼ Design Canvas – the canvas on which you draw designs

◼ Verilog – Displays Verilog code generated from the design canvas. The UDB Editor currently supports Verilog;
additional languages may be added in the future. All expressions must confirm to Verilog syntax.

◼ UDB Design Elements Palette

◼ UDB Properties

◼ Common Design Entry Toolbars – commands common to the design entry tools

◼ Context Menus – commands available by right-clicking

The UDB Editor provides the following UDB features as editable blocks:

◼ Datapath (DP)

◼ Control Register

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 283

◼ Status Register

◼ Status Interrupt Register

◼ Count7

◼ State Machines

See Also:

◼ Component Author Guide

UDB Design Elements Palette

This vertical toolbar is the same as the Design Elements Palette used for other design entry tools. The main
difference is that this toolbar contains the UDB resources to place on the UDB Editor. The buttons are as follows:

◼ – UDB Datapath

◼ – UDB Control Register

◼ – UDB Status Register

◼ – UDB Status Register Interrupt

◼ – UDB Count7

◼ – UDB State Machine

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 284

UDB Properties

On the right side of the UDB Editor, there are several sections for properties.

◼ Inputs – This is a list of inputs to the Component (equivalent to
schematic input terminals). The clock input is always present and
cannot be modified. All other inputs may be added, removed, or
renamed as needed.

◼ Outputs – This is a list of outputs to connect to the Component
(equivalent schematic output terminals). They operate exactly like
inputs, except there are no fixed / unchangeable defaults.

◼ Variables – These allow you to create named and reusable
combinatorial and registered logic. Separate icons are used to
indicate whether the variable is combinatorial or registered.

◼ Datapath Properties – These apply specifically to the datapath as
a whole (and not to a particular instruction). These properties
include:

□ Misc

□ Shift common configuration

□ Shift configurationA / configurationB

□ Configurable comparator inputs

□ Masks

□ FIFOs

Toolbar:

The toolbar contains the following commands:

◼ Delete Row – Deletes the selected row in one of the properties tables.

◼ Move Up/Down – Moves the selected row up or down in the table.

To Add an Input/Output/Variable:

Click in the cell showing "Enter Name", type a name and press [Enter].

To Delete an Input/Output/Variable:

Click on a row and press the [Delete] key or click the [Delete Row] button.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 285

To Edit Datapath Properties:

1. You must have a datapath resource placed on the canvas. Select it to enable the properties.

2. Click in a cell for a particular property, and either select a value from the pull-down menu or enter a value in the
field.

See Also:

◼ Component Author Guide

◼ UDB Editor

◼ UDB Datapath

◼ Working with Schematic Terminals

UDB Datapath

The UDB datapath element is used to configure datapath resources in the PSoC device. This element contains
several tables to edit Inputs, Registers, Outputs, and Instructions.

For more information about UDB datapaths, refer to the Component Author Guide.

To Place a Datapath:

Click on the Datapath icon in the UDB Design Elements Palette, and drag the instance to the canvas.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 286

To Configure Inputs, Registers, Outputs, and Instructions:

1. Double-click one of the areas within the Datapath instance to open a Configure dialog for that area.

Note Each area of the Datapath instance contains different configuration dialogs. See Configure Dialog
Descriptions for more information.

2. Select a value from the pull-down menu or enter a value in the field, as appropriate.

3. Click OK to close the dialog.

To Configure General Datapath Properties:

To change the datapath name and other properties, make sure the datapath instance is selected to enable the
properties on the right side on the design canvas.

There you can edit each of the properties by selecting or typing a value.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 287

Configure Dialog Descriptions:

The Datapath element contains the following Configure dialogs:

Inputs

This dialog contains fields to select a datapath input and assign an input expression. There can be a total of six
inputs for a datapath. All supported values can be entered at the same time using this dialog.

Registers

This dialog contains fields to enter initial values for load registers. All supported values can be entered at the same
time using this dialog.

Note The values in the Load column come from the Input dialog selections; they are included as read-only fields for
reference.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 288

Outputs

This dialog contains fields to enter datapath output and assign a condition. There can be a total of six outputs for a
datapath. All supported values can be entered at the same time using this dialog.

Instructions

This dialog contains fields to enter various datapath instructions. There can be a total of eight instructions for a
datapath, and each instruction must be configured individually.

Each instruction is divided into three parts: ALU operation, Register writes, and Compare options. The ALU
operation determines what arithmetic or Boolean operation is performed for that instruction cycle. Register writes
are used to load A0 and A1 with values for the next instruction cycle. Compare options are used to set the
comparisons being made using comparator0 and comparator1. Refer to the Component Author Guide for more
details.

See Also:

◼ Component Author Guide

◼ UDB Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 289

UDB Control Register

Control Registers are used by the CPU to send commands to the Component. Each control register has eight
available bits that can be used throughout the design to control the various aspects of the Component operation.

Refer to the Component Author Guide for more information about control registers and the UDB Editor.

To Place a Control Register:

Click on the Control Register icon in the UDB Design Elements Palette, and drag the instance to the canvas.

To Configure Bits:

1. Double-click on the Control Register instance to open the Configure dialog.

2. Enter a Name, and select the Init and Mode values.

3. Click OK to close the dialog.

See Also:

◼ Component Author Guide

◼ UDB Editor

◼ Control Register Component datasheet (available from the Component Catalog)

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 290

UDB Status Register

Status Registers are used by the CPU to read hardware signals from the Component. Eight bits are available in a
single status register and allows signals from the Component to be seen by the CPU.

Refer to the Component Author Guide for more information about status registers and the UDB Editor.

To Place a Status Register:

Click on the Status Register icon in the UDB Design Elements Palette, and drag the instance to the canvas.

To Configure Bits:

1. Double-click on the Status Register instance to open the Configure dialog.

2. Enter an Expression, and select the Mode value.

3. Click OK to close the dialog.

See Also:

◼ Component Author Guide

◼ UDB Editor

◼ Status Register Component datasheet (available from the Component Catalog)

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 291

UDB Status Interrupt Register

Status Interrupt Registers are used to generate a maskable interrupt from the status bits. Seven bits are used as
the inputs and one bit is used as the interrupt output.

Refer to the Component Author Guide for more information about status interrupt registers and the UDB Editor.

To Place a Status Interrupt Register:

Click on the Status Interrupt Register icon in the UDB Design Elements Palette, and drag the instance to the
canvas.

To Configure Bits:

1. Double-click on the Status Interrupt Register instance to open the Configure dialog.

2. Enter an Expression, and select the Mode and Mask values.

3. Click OK to close the dialog.

See Also:

◼ Component Author Guide

◼ UDB Editor

◼ Status Register Component datasheet (available from the Component Catalog)

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 292

UDB Count7

The Count7 counter is a 7-bit down counter that should be used when a counter of three to seven bits is needed.
This provides resource savings compared to PLDs or datapath-based counter designs.

Refer to the Component Author Guide for more information about the Count7 and the UDB Editor.

To Place a Count7:

Click on the Count7 icon in the UDB Design Elements Palette, and drag the instance to the canvas.

To Configure Bits:

1. Double-click on the Count7 instance to open the Configure dialog.

2. Enter a Name, Inputs, Period, and Terminal count values.

3. Click OK to close the dialog.

See Also:

◼ Component Author Guide

◼ UDB Editor

◼ Count7 Component datasheet (available from the Component Catalog)

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 293

UDB State Machine

A state machine is control logic implemented using PLDs. It is used to send control signals to the elements in your
design and to keep track of the operations happening in your hardware.

Refer to the Component Author Guide for more information about state machines and the UDB Editor.

To Place a State Machine:

Click on the State Machine icon in the UDB Design Elements Palette, and drag the instance to the canvas.

To Configure a State Machine:

1. Double-click on the State Machine instance to open the Configure dialog.

2. Enter information in the various fields.

Refer to the Component Author Guide for a complete descriptions of these fields. A few notes:

□ State Name must be globally unique.

□ Encoding must be unique within a state machine.

□ Machine name must be globally unique; it is auto-populated when not a start state.

3. Click OK to close the dialog.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 294

To Add a State Transition:

1. Hover the cursor over one of the states to view the transition anchor point.

2. Click and drag from an anchor point to begin drawing the state transition.

3. Continue dragging to another state to make the connection. When you release the mouse, a Configure dialog
will display.

4. Enter the Expression, and add more expressions as needed.

5. Click OK to close the dialog.

To open the dialog again, double-click on the transition line.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 295

To Adjust the Transition Arc:

1. Click on the transition line to view the arc points.

2. Drag the middle arc point to adjust the arc as appropriate.

See Also:

◼ Component Author Guide

◼ UDB Editor

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 296

Other Tools

Schematic Macro Editor

The Schematic Macro Editor is similar to the Schematic Editor in that you use it to create schematics with access to
the Component Catalog and other associated schematic tools. However, the Schematic Macro Editor is also similar
to the Symbol Editor in that you use it to create Component macros that will display in the Component Catalog.

Schematic macros are typically created by Component authors to simplify usage of the Components they build.
Typical uses of the Components are prepared and made available as macros. End users use these macros instead
of using base Components.

Schematic macros are mini schematics. A Component can have multiple macros. Macros can be at the generic,
architecture, family and device levels. Macros can be dragged from the Component catalog and dropped into
schematics. Macros can have instances (including the Component for which the macro is being defined), terminals,
and wires.

The main Components of the Schematic Macro Editor include:

◼ design canvas – the canvas on which you draw designs

◼ Design Elements Palette

◼ Common Design Entry toolbars – commands common to the design entry tools

◼ Component Catalog – library of Components to use in your schematic

To Create a Schematic Macro:

Use the Add Component Item dialog to add a Schematic Macro to a Component.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 297

See Also:

◼ Schematic Editor

◼ Symbol Editor

Sheet Template Editor

The Sheet Template Editor allows you to create, edit, and save sheet templates for your schematics.

By creating you own sheet templates, you can add logos, company information, and so on to your template file, and
have them display on your designs.

Creating a Sheet Template:

1. Click File > New File .

2. On the New File dialog, select the Sheet Template icon, and click OK.

The Sheet Template Page Setup dialog displays.

3. Select the page size, select the page orientation, enter margins, and click OK.

A blank sheet template file (.cysheet) opens.

Designing a Template:

You can use all the drawing tools to design the template to meet your specifications.

◼ Use the Import Graphic tool to import a logo or other images.

◼ Use the Text tool to type your Company Name, Address, and other important information.

◼ Use the shape tools to create legends, frame your information, or for any other shapes you might need.

Using Template Properties:

The Properties dialog contains various fields for information about your template. Right-click on the canvas and
select Properties to open the dialog.

◼ The address fields (Addr1, Addr2, Addr3) can be used to enter your company's address.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 298

◼ The name field can be used to enter your company's name.

◼ The current user field can be used to enter your name or company ID.

◼ The DisplayName is where you enter the name of this template. It is also the name displayed in the Sheet
Catalog when you create a new executable project.

Saving a Template:

You can save your template anywhere on your PC. The default location for PSoC Creator to locate your template is
<INSTALL_PATH>\templates\sheets. If you save your template in another location, specify that location using the
PSoC Creator Design Entry Options, under Sheet Templates

See Also:

◼ Working with Shapes

◼ Working with Text

◼ Design Entry Options

◼ Properties

Format Shape

The Format Shape dialog allows you to change various properties for any shape (or set of shapes) on your canvas.

The types of properties available will vary depending on the selected shape(s). For example, text offers font, color,
size, etc., while a line offers width, pen type, end cap, etc.

Common Shape Properties:

Most of the common shape properties in this dialog are self-explanatory, and they are similar to the shape
formatting you will see in word-processing or drawing programs. For most of these properties, you select a value
from a pull-down menu.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 299

Advanced Shape Properties:

For some shapes, such as instance terminals, there are some advanced properties, including:

◼ Default Expression – Defines the default value for the shape expressed as <size>’b<value>, where <size> =
number of bits, and <value> = the binary value.

◼ Shape Tags – Defines one or more tags to be associated with one or more shapes for use with the shape
customization code; refer to the Component Author Guide.

◼ Visibility Expression – Defines an expression to evaluate whether or not the selected shape is visible. For
example in the UART Component, this property is defined with the variable $FlowControl for the rts_n and
cts_n terminals. If $FlowControl is set to true in the instance, then these terminals display in the schematic; if
false, they are hidden.

See Also:

◼ Component Author Guide

◼ Working with Shapes

◼ Working with Lines

◼ Common Design Entry Toolbars

Expression Editor

This dialog is used to help enter complex expressions.

The text entry on the left supports multiline and the available expression entries are presented in a tree on the right.
Hovering over an item in the tree will provide its description. Double-clicking an item in the tree will replace the
selected text in the left with the expression that was clicked on. Note that the expected type of the expression is
displayed in the title area of the dialog.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 300

To Open the Dialog:

Click the Expression button from either the default instance Configuration dialog or from the symbol file
Parameters Definition dialog.

Common Design Entry Toolbars

There are two common toolbars used with graphical design-entry editors, such as the Schematic Editor and Symbol
Editor: Formatting and Shape Formatting.

Note Many of these commands are also available from the Schematic Editor Context Menus and Symbol Editor
Context Menus.

Formatting:

The following table lists and describes the design entry formatting commands.

Note These commands apply to text labels only. To adjust text properties for the code editor, see the Options
Dialog.

Icon Command Description

-- Font Style Menu to select the font family and size.

-- Font Size Menu to select the font size.

Bold Make selected text bold.

Italic Make selected text italic.

Underline Underline selected text.

Align Left Align selected text left.

Align Center Align selected text center.

Align Right Align selected text right.

Font Color Choose color for selected text.

Line Color Choose line color (or none) for selected object(s).

Fill Color Choose fill color (or none) for selected object(s).

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 301

Shape Formatting:

The following table lists and describes the design entry shape formatting commands:

Icon Command Description

Format Shape Open Format Shape dialog to define various characteristics of the selected object(s).

Bring to Front Brings selected objects to the top of the canvas.

Send to Back Sends selected objects to the bottom of the canvas.

Rotate Left Rotates selected objects to the left.

Rotate Right Rotates selected objects to the right.

Flip Vertical Flips the orientation of selected objects vertically.

Flip Horizontal Flips the orientation of selected objects horizontally.

Convert to
Closed Shape

Groups selected lines and arcs into a closed shape.

Group Groups selected objects into a single shape.

Ungroup Removes the grouping from a previously grouped set of objects.

See Also:

◼ Schematic Editor

◼ Symbol Editor

◼ Working with Lines

◼ Working with Shapes

◼ Design Elements Palette

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 302

Design Elements Palette

The design elements palette is a vertical toolbar on the left side of the canvas of graphical design-entry editors,
such as the Schematic Editor and Symbol Editor. The palette contains various design elements you can place on
your canvas.

Common Elements:

The following table lists and describes the common design entry shape commands available on both the Schematic
Editor and Symbol Editor:

Icon Command Shortcut
**

Description

Select [Esc] Default; allows items to be selected. Also escapes other tools.

Draw Rectangle [R] Used to draw squares and rectangles.

Draw Ellipse [E] Used to draw circles and ovals.

Draw Line [L] Used to draw lines.

Draw Arc [C] Used to draw curved lines.

Draw Text [T] Used to draw text.

Insert Image [M] Used to insert an image onto the canvas. Allowed image formats are:
BMP, GIF, EXIF, png, PNG, and TIFF.

** Keyboard shortcuts for shape drawing tools are only active while the sheet canvas document is active.

Schematic Editor Elements:

The Schematic Editor palette contains the following elements:

◼ Terminals – Used to draw digital input, output, and inout, as well as analog and
external schematic terminals. See Working with Schematic Terminals and Keyboard Shortcuts.

Note Schematic terminals are hidden from the DEP when you are editing a top-level schematic. They only
appear when creating a schematic implementation for a Component.

◼ Wire – Used to draw wires on the schematic; the shortcut is [W]. See Working with Wires.

◼ Sheet Connector – Used to draw connectors between commonly named wires on multiple sheets; the
shortcut is [S]. See Using Multiple Pages and Connectors.

Symbol Editor Elements:

◼ Terminals – Used to draw digital input, output, and inout, as well as analog and
external Component terminals. See Working with Component Terminals and Keyboard Shortcuts.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 303

Normal vs. Sticky Mode:

All commands on the palette except Select have two modes: normal and sticky. Normal mode allows you to place
the element on the canvas once, while sticky mode allows you to repeat placing an element indefinitely.

◼ To activate normal mode, single-click an element; to activate sticky mode, double-click an element.

◼ To escape sticky mode, press [Esc] or click Select .

See Also:

◼ Schematic Editor

◼ Symbol Editor

◼ Keyboard Shortcuts

Working with Text

The Text tool allows you to write text on your symbol and schematic documents. For basic shapes, such as
rectangles, circles, and lines, etc., you can add text to label them. This section covers the basics for creating a text,
and it provides more advanced techniques for using text substitutions.

Note Wires and terminals may also have text that is referred to as labels. These wire and wire labels are controlled
using specific dialogs. See Signal Name, Wire Labels and Names and Terminal Name for more information.

To Create Text:

1. From the Design Elements Palette, select the Text Tool.

2. Click on your schematic or symbol canvas.

A text box appears:

3. Type the text and click on the canvas.

Your text displays as you typed it, surrounded by a dashed box.

To Edit Text:

1. Double-click the text label to edit.

The text becomes selected in the same manner as creating new text.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 304

2. Edit the text as appropriate and click on the canvas.

Your text displays as you edited it, surrounded by a dashed box.

See Also:

◼ Schematic Editor

◼ Symbol Editor

◼ Design Elements Palette

◼ Wire Labels and Names

◼ Working with Schematic Terminals

◼ Working with Component Terminals

◼ Using Text Substitution

Using Text Substitution

When creating and editing text boxes in symbols and schematics (see Working with Text), you can use substitutions
to replace the string you type with different types of information. You can enter various expressions (for example,
`=1+1`) that will expand to the appropriate value.

To Use Text Substitution:

1. Create a text box.

2. Type in the box, using the following format:

`=<expression>`

The format must use a backward apostrophe [`], equals sign [=], the expression, and closed with another

backward apostrophe [`]. If the expression is or contains a parameter, use the dollar symbol [$] in front of the

parameter name.

`=$<parameter>`

Available Substitution in Documents:

You can have as many substitution points in your text as you would like. You have access to parameters, document
properties, and instance names. You also have access to enums, as well as the full expression language. For more
information about expressions, refer to the Component Author Guide.

The following are the available parameters visible/available in the various documents:

◼ Text access to parameters and functions really only makes sense in symbols. There may be a corner case that
would make sense in schematics. Access to parameters and functions is not allowed in macros.

◼ Text in symbols can see all parameters defined in the symbol. It doesn't matter if they're built-in (such as
$INSTANCE_NAME) or user-defined.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 305

◼ Text in schematics can see all parameters defined in the schematic's symbol. For example, the schematic that
implements a UART_v1_20 Component can use `=$PARAM` to expand UART parameters.

◼ Text substitution has no semantic influence on the design. It is only available so it can be read by users.

◼ Text in a Schematic Editor only has access to the default value of the parameters.

◼ Text in schematics that do not have symbols cannot see any parameters. You can only use simple expressions,
such as `=1+1`.

◼ Text in Schematic Macros do not have access to any parameters.

◼ Text expressions have access to Component-specific functions created via the ICyExprEval_v1 or
ICyExprEval_v2 customizer APIs (see Customizer API Reference Guide). The exact same rules apply here as
with parameters:

□ in symbols can call functions defined by that Component being defined

□ in schematics can call functions defined by the Component being implemented

□ in schematic macros cannot be called at all

Substitution Examples:

The following sections provide different examples for variables you can use.

Symbol Parameters

On symbols, you can refer to any parameter you define (but you'll get the default value). When your symbol is
instantiated in a schematic, you'll see the parameters set by the user on that instance. All parameters must use the
$ sign. For example, parameter p1, type = int, default value = 42, enter the following:

`=$p1`

The text displayed for this label will be 42.

Document Properties

On symbols and schematics you can refer to a document property. For example:

`=$Doc.CurrentUser`

The text displayed for this label will be the current user's name or ID. See the Properties dialog for more information
about the different properties available.

Instance Name

On symbols you can refer to the instance name. You'll always get "Inst_N" in the symbol document, but when
dropped in a schematic it will have that instance's proper name.

`=$INSTANCE_NAME`

Note There is a setting in the Design Entry Options dialog to show or hide unevaluated expressions

Enumerations

On symbols and schematics you can refer to any enumeration. For example, if you define the following enum type:

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 306

enum Foo

{

 Foo_VAL_1 = 1,

 Foo_VAL_2 = 2

};

You would enter the variable for this label as:

`=Foo_VAL_1`

The text displayed for this label will be Foo_VAL_1.

Notice that the enumeration was converted to a string, and the default string conversion uses the textual name of
the enum. If you want to display the numeric value you can do one of two things:

`=Foo_VAL_1 + 0`

- or -

`=cast(int, Foo_VAL_1)`

The first method takes advantage of the fact that the + operator forces the left and right to be a number and that 0

is the additive identity. The second method uses the explicit casting operation and forces the enumeration to
convert to an int.

Complicated Expressions

You can also do complicated expressions. For example:

`="p1=" . $p1 . " Current User=" . $Doc.CurrentUser . " Foo_VAL_1=" . cast(int,

Foo_VAL_1)`

The text displayed for this label will be: p1=42 Current User=xxx Foo_VAL_1=1

This example used casting and string concatenation. You can also embed as many substitution strings in your edit
text as you want. For example:

Life is short, so eat `=$1` donuts and `=Foo_VAL_1 + 0` fig newtons.

The text displayed for this label will be: Life is short, so eat 42 donuts and 1 fig newtons.

See Also:

◼ Schematic Editor

◼ Symbol Editor

◼ Working with Text

◼ Component Author Guide

◼ Customizer API Reference Guide

◼ Properties dialog

◼ Design Entry Options

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 307

Working with Lines

The Schematic Editor and Symbol Editor both provide a line tool to draw lines. This section describes various ways
to draw and work with lines, including:

◼ Drawing a single line

◼ Drawing multiple lines

◼ Moving a line

◼ Resizing a line

See also Working with Shapes.

To Draw a Single Line:

1. Click the Draw Line tool.

2. Move the cursor to the position to start the line.

3. Click and hold the mouse button, and drag the cursor to the end point of the line.

4. Release the mouse button.

To Draw Multiple Lines:

1. Double-click the Draw Line tool to enter sticky mode.

2. Move the cursor to the position to start the line.

3. Click and hold the mouse button, and drag the cursor to the end point of the first line.

4. Release the mouse button.

5. Move the cursor to the start of the second line.

6. Click and hold the mouse button, and drag the cursor to the end point of the second line.

7. Continue clicking dragging and until you are done drawing lines.

8. Press [Esc] or click Select to exit sticky mode.

To Move a Line:

1. Click the Select tool.

2. Click and hold the mouse button on the line to move, and drag it to the desired position.

When you hover your mouse over the line, your cursor changes to a finger.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 308

To Resize a Line:

1. Click the Select tool.

2. Click the mouse button on the line to resize.

Notice that its handles display.

□ To change either the width or the height, drag a side handle.

□ To change both the width and the height, drag a corner handle.

See Also:

◼ Using Design Entry Tools

◼ Design Elements Palette

◼ Working with Shapes

Working with Shapes

When using the Symbol Editor or the Schematic Editor, you can draw many different kinds of shapes. There are
many similarities between shapes and lines; however, lines have a few differences. This section covers the basics
of working with shapes, including:

◼ Drawing a shape

◼ Moving a shape

◼ Resizing a shape

See also Working with Lines.

To Draw a Shape:

1. Click the tool for the shape to draw. See Common Design Entry Toolbar.

2. Move the cursor to the position to start the shape.

3. Click and hold the mouse button, and drag the cursor to the end point of the shape.

4. Release the mouse button.

To Move a Shape:

1. Click the Select tool.

2. Click and hold the mouse button on the shape to move, and drag it to the desired position.

When you hover your mouse over the line, your cursor changes to a finger.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 309

To Resize a Shape:

1. Click the Select tool.

2. Click the mouse button on the shape to resize.

Notice that its handles display.

□ To change either the width or the height, drag a side handle.

□ To change both the width and the height, drag a corner handle.

See Also:

◼ Using Design Entry Tools

◼ Design Elements Palette

◼ Working with Lines

Zooming

There are different windows, such as the Schematic Editor and Symbol Editor, that allow you to zoom in and out.
For these types of windows there are several useful zoom features you may wish to use:

◼ Toolbar

◼ [Ctrl] Key

◼ Right-Click

Use the Toolbar:

◼ To pick a specific zoom percentage, click the Zoom pull down menu and select the zoom level you want. You
can also manually type any percentage; the available zoom range is 2% to 2038%.

◼ To zoom incrementally, click Zoom In or Zoom out, as appropriate.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 310

Use the [Ctrl] Key:

◼ Press and hold the [Ctrl] key and drag a box around the area you wish to magnify. This action draws a red
rectangle as you drag the mouse.

Immediately upon releasing the mouse, the canvas will zoom to the selected area.

□ Press and hold the [Ctrl] key and use the scroll wheel on your mouse to zoom in and out
incrementally.

□ Press and hold the [Ctrl] key and press the [+] key to zoom in and the [–] key to zoom out.

Use the Right-Click Menu

Right-click on a canvas and select the appropriate Zoom options.

See Also:

◼ Standard Toolbar

◼ Keyboard Shortcuts

Scrolling

Various windows provide scroll bars to view more information. There are a few ways to scroll:

◼ Drag the vertical or horizontal scroll bar, as needed.

◼ Use your mouse scroll wheel to scroll up and down.

◼ Press and hold the [Shift] key with the mouse scroll wheel to scroll left and right.

◼ Use the left and right arrows to scroll vertically; up and down arrows scroll horizontally.

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 311

Design Entry Reserved Words

The following words are reserved by PSoC Creator Design Entry tools. They cannot be used for names of design
elements, such as wires, terminals, instances, parameters, etc.

C/C++ Verilog VHDL

asm always abs

auto and access

bool assign after

break attribute alias

case begin all

catch buf and

char bufif0 architecture

class bufif1 array

const case assert

const_cast casex attribute

continue casez begin

default cmos block

delete deassign body

do default buffer

double defparam bus

dynamic_cast disable case

else edge Component

enum else configuration

explicit endattribute constant

export endcase disconnect

extern endfunction downto

false endmodule else

float endprimitive elsif

for endspecify end

friend endtable entity

goto endtask exit

if event file

inline for for

int force function

long forever generate

mutable fork generic

namespace function group

new highz0 guarded

operator highz1 if

private if impure

protected ifnone in

public initial inertial

register inout inout

reinterpret_cast input is

restrict integer label

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 312

C/C++ Verilog VHDL

return join library

short medium linkage

signed module literal

sizeof large loop

static macromodule map

static_cast nand mod

struct negedge nand

switch nmos new

template nor next

this not nor

throw notif0 not

true notif1 null

try or of

typedef output on

typeid parameter open

typename pmos or

union posedge others

unsigned primitive out

using pull0 package

virtual pull1 port

void pulldown postponed

volatile pullup procedure

while rcmos process

wchar_t real pure

_Bool realtime range

_Complex reg record

_Imaginary release register

 repeat reject

 rnmos rem

 rpmos report

 rtran return

 rtranif0 rol

 rtranif1 ror

 scalared select

 signed severity

 small signal

 specify shared

 specparam sla

 strength sll

 strong0 sra

 strong1 srl

 supply0 subtype

 supply1 then

 table to

Using Design Entry Tools

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 313

C/C++ Verilog VHDL

 task transport

 time type

 tran unaffected

 tranif0 units

 tranif1 until

 tri use

 tri0 variable

 tri1 wait

 triand when

 trior while

 trireg with

 unsigned xnor

 vectored xor

 wait

 wand

 weak0

 weak1

 while

 wire

 wor

 xnor

 xor

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 314

5 Building a PSoC Creator Project

When you build a project, PSoC Creator goes through series of processes to produce an output file. For a design
project, the output is a hex file used to program a device. For a library project, the output is a library file used to
specify Component information. The following image shows the processes at a high level for a design project. A
library project would not necessarily include all of these processes.

When you create a project, PSoC Creator sets the tool chain with which to build the output. The tool chain is a
collection of tools (code generator, compiler, assembler, linker, etc.) that transforms a project's contents into the
appropriate output for the project's type.

Build Configurations:

PSoC Creator provides Debug and Release configurations for these tool chains. Changing between build
configurations can help when developing and testing a design. For example, while first developing code it is easiest
to use a 'Debug' configuration that typically has fewer optimizations and produces more debug information. This
can help in tracking down exactly what is causing an issue. As the code becomes stable and is getting ready for
release, using a 'Release' configuration becomes preferable as additional optimizations are often desired. These
optimizations help cut down the size of the program and allow it to run faster.

Having multiple configurations available allows for quickly switching between 'Debug' and 'Release' modes if issues
are discovered that need investigation. The Build Configuration on the main toolbar allows for changing between
different configurations. If this option is not visible, right click on the toolbar area and select Build Configuration.
Additionally, the build options for any configuration can be adjusted using the Build Settings dialog.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 315

Section Topics:

This section covers various aspects of the PSoC Creator build system. It includes the following topics:

◼ Build Toolbar Commands

◼ Build Menu

◼ Build Settings

◼ Mapper, Placer, Router

◼ Control File

◼ Directives

◼ Generated Files

◼ Source Code Control

◼ Static Timing Analysis

◼ CyPrjMgr Command Line Tool

◼ Keil C51 Compiler

◼ Reentrant Code in PSoC 3

Build Toolbar Commands

The Build toolbar contains many of the common commands you will use while building your designs:

The pull-down menu allows access to different build and clean options, shown in the following table.

The Build toolbar contains the following commands:

Menu Item Icon Shortcut Description See Also

Build (Named) Project

[Shift]+[F6] Build the selected project. Building a PSoC
Creator Project

Clean and Build (Named)
Project

 Clean and build the selected project.

Note During the clean process, PSoC
Creator cleans the build output of only
those files that are still part of the project.
Any output files generated using source
files that are no longer part of the project
(deleted or simply removed from project),

will be left untouched.

Clean (Named) Project

 Clean the selected project.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 316

Menu Item Icon Shortcut Description See Also

Build All Projects

[F6] Build all projects in the workspace.

Clean and Build All Projects

 Clean and build all projects in the
workspace.

Clean All Projects

 Clean all projects in the workspace.

Cancel Build

[Ctrl]+[Break] Cancel the build process.

Compile File

[Ctrl]+[F6] Compile the selected file.

Generate Application

 Generate API source code files. Generated Files

Program

[Ctrl]+[F5] Program the selected device with the code
generated from the selected project.

Debug

[F5] Start the debugger. Using the Debugger

See Also:

◼ Build Menu Commands

Build Menu

The Build menu contains the following commands:

Menu Item Icon Shortcut Description See Also

Build All Projects

[F6] Build all projects in the workspace. Building a PSoC
Creator Project

Clean All Projects

 Clean all projects in the workspace.

Note During the clean process, PSoC Creator
cleans the build output of only those files that
are still part of the project. Any output files
generated using source files that are no longer
part of the project (deleted or simply removed
from project), will be left untouched.

Clean and Build All Projects

 Clean and build all projects in the workspace.

Build (Named) Project

[Shift] + [F6] Build the selected project.

Clean (Named) Project

 Clean the selected project.

Clean and Build (Named)
Project

 Rebuild the selected project.

Cancel Build

[Ctrl] + [Break] Cancel the build process.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 317

Menu Item Icon Shortcut Description See Also

Compile File

[Ctrl] + [F6] Compile the selected file.

Generate Application

 Generate API source code files. Generated Files

Generate Project Datasheet

 Generate a project datasheet. Generating a Project
Datasheet

See Also:

◼ Build Toolbar Commands

Build Settings

The Build Settings dialog lets you define various build settings on a per-project basis. You can also select a
different toolchain for the selected project, and in turn set different settings for the compiler, assembler, and linker.

Build Settings Categories:

This dialog may contain several different categories of settings, depending on the specified PSoC device and
project type. These categories include:

◼ Code Generation (this topic)

◼ Debug

◼ Customizer

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 318

◼ Peripheral Driver Library (PSoC 6)

◼ Target IDEs (PSoC 6)

◼ Toolchain

□ Assembler

□ Compiler

□ Linker

□ User Commands

□ Library Generation

To Open the Dialog:

Right-click on your project and select Build Settings.

Build Settings Macros:

The Build Settings dialog contains macros that can be used to substitute names for directories and files. You can
use these macros in any Build Settings field where you can type.

Macro Description Example Values

${Config} Build Configuration. "Debug" or "Release"

${ProcessorType} Name of the processor type. "CortexM0", "CortexM3", ...

${Platform} Name of Toolchain. "ARM_GCC_541", "ARM_GCC_Generic", …

${ProjectShortName}
Name of the project without

Extension.
"Design01", Design02", …

${ProjectDir}
Directory of the project file relative to

current directory.
".\Design01.cyprj", ".\Design02.cyprj", …

${ProjectFile}
Path of the project file relative to

current directory.
"."

${WorkspaceDir}
Directory of the workspace file relative

to current directory.
"..", ".", …

${WorkspaceFile}
Path of the workspace file relative to

current directory.
"..\Workspace01.cywrk", "..\Workspace02.cywrk", …

${OutputDir}

Path of the output directory as

specified by in the toolchain's

"General" page.

"${ProjectDir}\${ProcessorType}\${Platform}\${Config}"

Note There is also a $(CompileFile) macro that corresponds to the file being compiled when running
compile/assemble commands. It is ignored everywhere else, and it should not to used.

Settings Options:

The top of the dialog contains the following pull-down menus:

◼ Configuration – Use this menu to set build setting preferences for the different types of builds: Debug or
Release. Debug mode adds logging information for debugging purposes; Release mode does not.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 319

Note This option does not change the build type for your project. It is only used to set preferences. The
currently active build type is shown in parentheses. To change the active build type, close the Build Settings
dialog, and use the Configuration pull-down menu located on the main toolbar.

◼ Toolchain – Use this menu to select the toolchain for the selected project. To specify a default toolchain for all
new projects, see Selecting a Default Compiler.

◼ Processor Type – For library projects, use this menu to select the processor type.

Code Generation Category:

The Code Generation category displays by default. This section allows you to specify various code generation
options.

Code Generation:

◼ Custom Code Gen Options – Custom arguments to control the API code generator. At this time, there are no
arguments exposed to users. This field is internal to Cypress only.

◼ Skip Code Generation – true or false.

Note Skipping code generation effectively locks the design such that future changes to the schematic, design-
wide resources, and so on are not incorporated into the build output.

Fitter:

◼ Custom Fitter Options – Specify custom arguments to control how the design fits into the PSoC
device. Some of the options include the following:

-q : The -q ("quiet") option suppresses the printing of status messages during compilation. This

leads to a less cluttered screen when compilation and synthesis are finished.

-xor2 : The -xor2 option passes along any XOR operators found in the design to the fitter to

implement as it sees fit.

-f(O|D|T) : The -f option enables certain global fitter options. -f must be followed (without an

intervening space) by one of the arguments O, D or T. The options define the type of flip-flop

that should be used by UDB logic (d-type or t-type). O stands for optimal, and will allow warp

to pick optimal flip-flop type for your device.

-f(P|K) : The -fK option forces the fitter to preserve the user-specified polarity for all outputs. This is

the opposite of the -fP option, which optimizes for the optimal polarity. The -fK option is

not recommended for most designs, but is useful in certain cases when the user is able to

determine the proper polarity for all the signals.

-m : The -m option enables a smart compile of the project Verilog files. Generally, without this

option, Warp compiles all the files. When this option is specified, Warp compiles only those
files that have been modified since the last compile.

-w# : The -w option specifies the maximum number of warnings that can appear as a result of a

single Warp run before Warp quits.

-e# : The -e option specifies the maximum number of non-fatal errors that can occur on a single

Warp run before Warp exits.

-yg(a|s|c) : The -yg option causes Warp to synthesize the design so that UDB Components are

optimized for area (a), speed (s) or as combinatorial equations (c).

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 320

-yv# : The -yv option controls the amount of information that is reported in the report file. The -yv

option should be followed by a digit. The default is 0. Numbers higher than zero produce
more verbose report files useful for debugging. By default (with a value of 0), the report file

only indicates major events during synthesis.

-v# : The -v option has a numeric argument that controls the aggressiveness of the virtual

substitution algorithm. The range of numbers allowed is 0 to 11, where a value of 0 does not
perform any virtual substitution and a value of 11 performs virtual substitution even against
the better judgement of the algorithm to isolate large combinatorial and compact them in a
UDB.

Synthesis:

◼ Custom Synthesis Options – Specify custom arguments to control HDL synthesis. See also Directives Editor.

-fl -- no_factor

-o -- opt_level

◼ Quiet Output – Control the level of output from the synthesis tool: true or false.

◼ Synthesis Goal – Select the efficiency of the synthesizer: speed or area.

◼ Synthesis Optimization Effort – Select how much effort the synthesizer should put into optimizing the design:
none, normal, or exhaustive.

◼ Virtual Node Substitution Level – Used for optimizing designs for size and speed: 0-11.

See Also:

◼ Workspace/Project

◼ Project Types

◼ Directives Editor

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 321

Debug Build Settings

The Debug section of the Build Settings dialog allows for selecting project settings that influence the debugging
experience.

Debug Target:

This controls what portion of the design is to be debugged. It contains the following options:

◼ Application Code and Data – This is the default value; valid for all project types.

□ In normal projects and Bootloader projects, this refers to the application flash.

□ In a Multi-App-Bootloader project, this refers to the first application in Bootloadable flash.

□ In a Bootloadable project, this refers to the Bootloadable flash

◼ Application Code and Data 2 – Use this option for a Multi-App Bootloader project for debugging the second
application of the Bootloadable project.

◼ Bootloader – Use this option only for debugging the Bootloader part of a Bootloadable project.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 322

Note Because the Bootloader performs a software reset to start the Bootloadable application, there is no way to
debug a Bootloadable application from the standard Execute Code menu option. Instead, it is recommended that
you debug your application before making it a Bootloadable project. If you have already made it a Bootloadable
project, you can still use the debugging functionality by programming the design onto the board. Then, reset/power
cycle the device and use the Attach to Target option to debug the Bootloadable application.

Debugging Bootloader/Bootloadable Projects

When App 1 is running, you can debug App 1 by using the Attach to Target option. However, the debugger will
disconnect if any software reset happens.

When App 2 is running, you can still use the Attach to Target option. However, you will not be able to use Step
Into or Step Out commands from the Bootlodable project, because the debugger by default assumes that the code
placement is in the App 1 region. You can only use Halt and Run commands when App 2 is running.

It is possible to debug App 2 of a Bootloadable project using the following steps:

1. Right-click on the Bootloadable project and select Build Settings to open the Build Settings dialog.

2. In the "Debug" settings, change the value of Debug Target to "Application Code and Data 2" and close the
dialog.

3. When "Application Code and Data 2" is set as the Debug Target, then commands such as Step Into or Step
Out will work in App2.

See Also:

◼ Build Settings

◼ System Reference Guide

◼ Attach to Target

◼ Debugger Toolbar Commands

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 323

Customizer Build Settings

The Customizer section of the Build Settings dialog is used to control various options that determine how the
source based customizers for the selected project are built.

General:

◼ Assembly References – Specify any additional .NET assemblies which need to be included while building the
customizer code for the selected project.

◼ Command Line Options – Specify any additional command line options to be given to the compiler while
building the customizers for the selected project. The default command line option only defines the "TRACE"
constant, which is useful while debugging.

◼ Customizer Build Mode – Specify whether the customizers for this project should be built in "Debug" or
"Release" mode. In the "Debug" mode, the customizer will be built with debugging information. This mode
should be chosen while debugging customizers.

See Also:

◼ Build Settings

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 324

Peripheral Driver Library Build Settings

The Peripheral Driver Library section of the Build Settings dialog applies to PSoC 6 and FM0+ devices only. Use
the options on this page to select the Default or Custom Peripheral Driver Library (PDL) located on your computer.
This allows PSoC Creator to locate the correct copy and version of PDL you wish to include in the build of your
design. You can also select any Software Package Imports (i.e., middleware) that may be available.

Default PDL Installation

PDL 3.x or later is used for PSoC 6 devices and PDL 2.1.0 is used for FM0+ devices. Both versions of PDL may be
installed on your computer, depending on the installation options you chose.

The Default field on this dialog displays the path of the default PDL that will be used for projects, as specified on
the Options dialog in the Peripheral Driver Library location field. If the path is displayed and it is correct, then
there is nothing more to be done. However, if the path is not displayed or if it is incorrect, you can select the correct
path using the Options dialog.

Custom PDL Installation

In some cases, you may make a local copy of your PDL to modify a driver. And, for a specific design, you may want
to use that copy of PDL instead of the default PDL installation. In that situation, select the Custom option and
navigate to the alternate location of the PDL copy you wish to use.

Software Package Imports

This section is used to select software packages (Middleware, RTOSes) to include in your build. They don't have
schematic Component representations, so they can be selected here.

Under Package, select the check box for one or more middleware packages to include.

Under Variant, select the appropriate variant of the middleware to use, if applicable.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 325

Note Selected software packages require certain drivers to be included in your design. These software packages
will display an informational icon and provide a tooltip detailing what PDL driver(s) must be in your design.

This section has the following buttons:

◼ Expand/Collapse – Used to expand/collapse displayed packages.

◼ Check All/Uncheck All – Used to select or unselect all packages.

See Also:

◼ Build Settings

◼ Options Dialog

Target IDEs Build Settings

The Target IDEs section of the Build Settings dialog applies to PSoC 6 devices only. Use the pull-down menus to
select one or more IDEs for which to generate files. You will then use these files to further develop the PSoC
Creator design in those selected IDEs. For more information, refer to Integrating into 3rd Party IDEs.

IDE Options

This section provides a set of pull-down menus to select one or more IDE for which to generate files. All menus are
set to Disable by default. The IDEs include:

◼ CMSIS Pack – Applies to Eclipse and ARM MDK. If set to Generate, this option generates Component
Instance firmware for use in Eclipse. Application firmware is not included. There are also additional fields to
define the pack as follows:

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 326

□ Vendor: Enter the Vendor name to be shown in the pack. If you provide a custom value for the Vendor
field, it will change the name of the generated pack, as well as its installation location with your CMSIS
Pack root folder. However, when creating a new project within a third-party IDE, users will select their
project device from under the Cypress heading. See the appropriate instructions under PSoC 6
Designs for the appropriate 3rd party IDE.

□ Pack: Enter the Project name of the pack. The pack name will be combined with the device part
number to present the device name in the µVision environment. µVision restricts the device name to be
a maximum of 48 characters. So, the pack name must be short enough to be combined with the other
characters to make total number of characters equal to 48 or less.

□ Version: Enter the major version, minor version, and revision number for the pack, as appropriate for
your development environment.

◼ IAR EW-ARM – If set to Generate, this option generates Application firmware, Component Instance firmware,
and PDL Firmware for use in IAR. This menu also includes Generate without copying PDL files, which
generates a separate .ipcf file to include PDL files in the generated output.

◼ Makefile – If set to Generate, this option generates Application firmware, Component Instance firmware, and
PDL firmware for use in Make.

Types of PSoC Creator Project Firmware

A PSoC Creator project consists of different types of firmware:

◼ Application firmware – Firmware files written and maintained by the user (e.g., main.c, cyapicallbacks.h).

◼ Component Instance firmware – Firmware generated by PSoC Creator during the build process. Every
instance of a Component in the design has its own copy of its firmware. (e.g., UART_1.c, UART_1.h).

◼ PDL firmware – This firmware is a new driver-style firmware supported by PSoC 6 devices. A peripheral driver
is a collection of related C functions shared by all instances of a peripheral.

See Also:

◼ Build Settings

◼ Integrating into 3rd Party IDEs

◼ Generating PSoC 6 Files for 3rd Party IDEs

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 327

Toolchain Build Settings

The Toolchain section of the Build Settings dialog provides additional toolchain-specific properties to define
compiler, assembler, and linker options. These settings apply only to the selected Configuration, Toolchain, and
Processor Type, and the settings can be set differently for each option.

General Category:

The top level of this category contains only one option under General: Output Directory. This option allows you to
specify the relative path to the output file directory. The default is:

$(ProjectDir)\$(ProcessorType)\$(Platform)\$(Config)

This defines the project directory, processor type, platform, and configuration.

See Also:

◼ Build Settings

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 328

Assembler Build Settings

The Assembler section of the Build Settings dialog is used to control various options depending on the CPU and
compiler.

ARM Options:

General

◼ Additional Include Directories – Specify additional directories to the compiler's include path. If you wish to
specify more than one, separate them with semi-colons.

◼ Create Listing File – Create file containing high-level source and assembly: true or false.

◼ Difference Tables – Enable to issue warning when assembler alters the code emitted for directives: true or
false.

◼ Generate Debugging Information – Produce debugging information to work with GDB: true or false.

◼ Join Data and Text Sections – Enable this option to generate shorter address displacements: true or false.

◼ Suppress Warnings – Enable this option to suppress all warnings: true or false.

Command Line

◼ Custom Flags – Allows you to enter any flags that are understood by the compiler. Refer to the appropriate
compiler documentation. These flags are added to the flags generated by PSoC Creator based on the
selections made in other sections.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 329

Keil Options:

General

◼ Additional Include Directories – Specify additional directories to the compiler's include path. If you wish to
specify more than one, separate them with semi-colons.

◼ Generate Debugging Information – Produce debugging information to work with GDB: true or false.

◼ Macro Expansion – Enable macro expansion: true or false.

◼ Preprocessor Definitions – Opens the Preprocessor Definitions dialog to add define directives to your source
code.

Listing File

◼ Conditional – Include conditional assembler source code: true or false.

◼ Create Listing File – create file containing high-level source and assembly: true or false.

◼ Macros – Include all macro expansions in the listing file: true or false.

Command Line

◼ Custom Flags – Allows you to enter any flags that are understood by the compiler. Refer to the appropriate
compiler documentation. These flags are added to the flags generated by PSoC Creator based on the
selections made in other sections.

See Also:

◼ Build Settings

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 330

Compiler Build Settings

The Compiler section of the Build Settings dialog is used to control various options that will vary depending on the
CPU and compiler.

ARM Options:

Code Generation

◼ Struct Return Method – Specify the method used for returning short structs/methods: system default, register,
or memory.

◼ Verbose Asm – Enable extra commentary information in the generated assembly code to make it more
readable: true or false.

General

◼ Additional Include Directories – Specify additional directories to the compiler's include path. If you wish to
specify more than one, separate them with semi-colons.

◼ Create Listing File – Create file containing high-level source and assembly: true or false.

◼ Default Char Unsigned – Set the default char type to be unsigned: true or false.

◼ Generate Debugging Information – Produce debugging information to work with GDB: true or false.

◼ Preprocessor Definitions – Opens the Preprocessor Definitions dialog to add define directives that can
impact how your C source code is compiled.

◼ Strict Compilation – Enable strict ISO C/C++ compilation: true or false.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 331

◼ Warning Level – Determine the warning level to use: 0, 1, 2.

◼ Warnings as errors – Report all warnings as errors: true or false.

Optimization

◼ Create Function Sections – true or false.

◼ Inline Functions – Enable function inlining during compilation: true or false.

◼ Optimization Level – Options for code optimization. These values correspond with the toolchain command line
code (in parentheses): None (-O0), Debug (-Og), Minimal (-O1), High (-O2), Speed (-O3), Size (-Os). Refer to
the toolchain manual for details.

Command Line

◼ Custom Flags – Allows you to enter any flags that are understood by the compiler. Refer to the appropriate
compiler documentation. These flags are added to the flags generated by PSoC Creator based on the
selections made in other sections.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 332

Keil Options:

Code Generation

◼ Inline Assembly – Enable inline assembly: true or false.

◼ Integer Promotion – Enable integer promotion: true or false.

General

◼ Additional Include Directories – Specify additional directories to the compiler's include path. If you wish to
specify more than one, separate them with semi-colons.

◼ Browse Information – Include browser information in the generated object module: true or false.

◼ Float Fuzzy – Specify the number of bits rounded before comparing floating-point numbers: 0-7.

◼ Generate Debugging Information – Include debugging information in the object file: true or false.

◼ Preprocessor Definitions – Opens the Preprocessor Definitions dialog to add define directives that can
impact how your C source code is compiled.

◼ Warning Level – Determine the warning level to use: 0, 1, 2.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 333

Listing Files

◼ Assembly Code Listing – Append an assembly mnemonics list to the listing file: true or false

◼ Create Listing File – create file containing high-level source and assembly: true or false.

◼ List Include Files – Print a list of the #include files in the listing file: true or false.

Optimization

◼ Linker Code Packing – Include information in the object file for linker-level program optimizations: true or
false.

◼ Optimization Emphasis – Indicate the emphasis of the optimization done by the compiler: none, size, or
speed.

◼ Optimization Level – Options for code optimization: 0-11.

Command Line

◼ Custom Flags – Allows you to enter any flags that are understood by the compiler. Refer to the appropriate
compiler documentation. These flags are added to the flags generated by PSoC Creator based on the
selections made in other sections.

See Also:

◼ Build Settings

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 334

Linker Build Settings

The Linker section of the Build Settings dialog is used to control various options depending on the CPU and
compiler.

ARM Options:

General

◼ Additional Libraries – Specify additional libraries to link to the executable. Use semi-colons to separate more
than one.

◼ Additional Library Directories – Specify additional libraries to add to the linker's library path. Use semi-colons
to separate more than one.

◼ Additional Link Files – Specify additional files to link to the executable. Use semi-colons to separate more
than one.

◼ Create Map File – Generate an updated listing file derived from the relocated addresses and data from the
linker: true or false.

◼ Custom Linker Script – Specify the path to a custom linker script to use when building the project instead of
the default script provided with the cy_boot Component.

◼ Remove Unused Functions – true or false

◼ Use Debugging Information – Enable to use the debugging information generated by gcc during compilation
of the source code: true or false.

◼ Use Default Libraries – true or false

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 335

Command Line

◼ Custom Flags – Allows you to enter any flags that are understood by the compiler. Refer to the appropriate
compiler documentation. These flags are added to the flags generated by PSoC Creator based on the
selections made in other sections.

printf, sprintf, and floating point values

The newlib nano C library used with the ARM GCC toolchain does not include support for floating point like %f in
format strings by default. This saves valuable flash memory. If you need to use floating point values you can tell
newlib nano to include floating point support in format strings by adding a custom command line argument to the
linker. Enter the following in the Linker > Command Line field:

-u _printf_float

Keil Options:

General

◼ Additional Link Files – Specify additional files to link to the executable. Use semi-colons to separate more
than one.

◼ Create Code Listing – Create code listing file that contains program source/assembly: true or false.

◼ Disable Unreferenced Segments Warnings – Disable linker warnings about unreferenced code segments:
true or false.

◼ Recursions – Control the number of recursions allowed in the linker before an abort: integer.

◼ Remove Unused Segments – true or false

◼ Warning Level – Determine the warning level to use: 0-2.

Listing File

◼ Create Map File – Generate an updated listing file derived from the relocated addresses and data from the
linker: true or false.

◼ Cross Reference Report – Include a cross reference report in the listing file: true or false.

◼ Generate Memory Map – Generate the memory map and overlay map in the listing file: true or false.

Debugging

◼ Generate Debug Lines – Include line number information in the linker output and map files: true or false. If
false, source-level debugging will not be possible.

◼ Generate Local Symbols – Include local symbol information in the linker output and map files: true or false. If
false, source-level debugging will not be possible.

◼ Generate Public Symbols – Include public symbol information in the linker output and map files: true or false.
If false, source-level debugging will not be possible.

◼ Symbol Types – Include symbol type information in the output file: true or false.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 336

Command Line

◼ Custom Flags – Allows you to enter any flags that are understood by the compiler. Refer to the appropriate
compiler documentation. These flags are added to the flags generated by PSoC Creator based on the
selections made in other sections.

See Also:

◼ Build Settings

User Commands Build Settings

The User Commands section of the Build Settings dialog allows you to specify commands to run before compiling
and after linking. The commands will be rooted from the project's cysdn directory.

◼ Pre Build - This command is run after code generation but before the compile step. If more than one command
is needed, a batch script must be used.

◼ Post Build - This command is run after the link step but before the hex-file generation step. If more than one
command is needed, a batch script must be used.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 337

Library Generation Build Settings

The Library Generation section of the Build Settings dialog applies to Library projects only.

At this time there is only one property:

◼ Custom Flags – Allows you to enter any flags that are understood by the compiler. Refer to the appropriate
compiler documentation. These flags are added to the flags generated by PSoC Creator based on the
selections made in other sections.

See Also:

◼ Build Settings

Mapper, Placer, Router

When you use the Build function, PSoC Creator converts the schematic and Verilog specifications of your design
into configuration information. That information can be used to program the digital and analog Components of the
device. The first phase of the conversion process is called the mapper. Once mapping completes, the placer and
router phases begin.

The mapper phase is where PSoC Creator maps the logic described in your design into Components that represent
functional blocks of the PSoC device. The placer phase positions the functional blocks into available locations of
the selected device. The placer will attempt to optimize the locations for the different Components based on the
connectivity in the design, as well as following any restrictions on locations you may have specified. After locations
for all the Components have been determined, the router phase computes the optimal signal path between the
Components through the switching fabric of the device. If there are not enough resources to support the
Components necessary for the design, or if PSoC Creator determines that routing is not possible, it will generate an
error and the build will fail.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 338

Note Due to the relationships between the domains of the part, PSoC Creator will attempt to place and route all the
analog Components first. Once that is complete, it will attempt to place and route the digital portion of the design.

Once the design has been mapped, placed and routed, the settings to create that configuration are generated and
written out to the Generated Files folder to be used when building the entire application for the project. You can
influence the results of the place and route phase by specifying where Components should be located in the
design. For more information, see Pin Editor and Directives Editor sections under Design-Wide Resources, as well
as the Directives topic.

Migrating from Older PSoC Creator Versions

When migrating from older versions of PSoC Creator, it is possible for a design that was previously building
successfully to fail with errors during Mapping, Placing, or, Routing. There are two reasons this can occur:

◼ a new rule has been added to the PSoC Creator backend that was previously missing

◼ changes to the backend have resulted in the project "moving" into a corner of the solution that cannot be solved

If a new rule has been added to PSoC Creator, the design was invalid, but PSoC Creator was not flagging the
design. If the error message is not about a rule violation, but about PSoC Creator being unable to map, place, or,
route the design, this can be worked around.

To work around the issue, open the design in the previously successful version of PSoC Creator and follow the
instructions for adding a Control File. Then use the control file to force the design to have the same placement as
the design previously had. Then save and close the design. When you open the design in the new version of PSoC
Creator, the design will keep the control file and work as in the previous version.

See Also:

◼ Design-Wide Resources

◼ Pin Editor

◼ Directives Editor

◼ Directives

◼ Generated Files

◼ Control File

Control File

A control file is an optional file that provides a common location for setting global directives for a given design. This
provides detailed control over many aspects of synthesis while maintaining a device and vendor independent
hardware description language (HDL) source file. The control file allows the user to attach directives via the
attribute mechanism, and the file supports the Warp specific HDL syntax for these (extended) attributes to allow the
cutting and pasting of these directives between the HDL source and the control file. The file can also be used for
back-annotating pinout and internal placement information from fitting and place and route results automatically.

During the process of synthesis, optimization, and factoring, Warp derives many new signal and node names to
realize the design. For example, Warp separates buses into individual signals. Even though objects such as buses
make HDL design entry much simpler, no VHDL-based way exists to assign attributes to portions of a bus. In other
cases, Warp produces brand new signal names which may not have any direct correlation to any single
VHDL/Verilog object within a design. This situation occurs during factorization where factors are produced by
examining the design globally.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 339

Only one control file is allowed per design, and the file must have the same base name as the top-level design file
name. For example, for a top-level design whose name is mydesign.vhd or mydesign.v, the control file must be
called mydesign.ctl.

The creation and editing of the control file is an iterative process, typically done to refine, improve, or constrain the
results of synthesis.

The control file is applied during parsing/analysis, during synthesis, and during fitting. Names created during
parsing/analysis are not qualified. Therefore, if the control file pattern matches the name, the attribute is applied.
This occurs at any level of the design hierarchy.

For example, consider a top level signal called c. An attribute applied to c will be applied to the top level signal, but
it will also be applied to any internal signal named c, including those in the Warp library. So if the control file says:

attribute placement_force of c : signal is "U(1,2)A";

it will attempt to force all signals named c into that programmable logic block.

Likely, there will be too many signals, and the placer will complain. The work around is to rename the top level
signal something unique, like top_level_c, or to use an attribute in the source file, not the control file.

To Create a Control File:

1. Click the Components tab of the Workspace Explorer.

2. Right-click on the TopDesign Component of the active project and select Add Component Item...

The Add Component Item dialog opens.

3. Scroll down to the Misc group, select Control File, and click OK.

A TopDesign.ctl file is created and added to the Workspace Explorer.

4. Double-click it to open the file.

See Also:

◼ Directives

◼ Attribute, CSAttribute, and FixedAttribute

◼ Control File Format

◼ Control File Pattern Matching

Attribute, CSAttribute, and FixedAttribute

Attribute:

Use Attribute for most applications of attributes.

The attribute keyword treats all patterns that do not begin with a backslash in a case-insensitive manner. Any
pattern that begins with a backslash is treated in a case-sensitive manner (similar to CSAttribute). The attribute
keyword is also allowed within the text of VHDL designs and will adhere to the syntax and semantics as defined in

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 340

the VHDL language. However, the meaning of attribute is still the same with the exception of applying wildcard
patterns.

CSAttribute:

For the rare situation when there are multiple objects which have the same identifier differing only in case (eg,
Fred_Astaire and fred_astaire), CSAttribute (case sensitive attribute) can be used to select the object with the
same name as the pattern provided.

The CSAttribute keyword treats all patterns in a case-sensitive manner.

FixedAttribute:

FixedAttribute is intended for use by tools. The pattern on the FixedAttribute line is actually a case sensitive name
in which any meta characters are treated as actual characters in the identifier.

The FixedAttribute keyword accepts an identifier, not a pattern, and does a case-sensitive match.

Validity Checking:

For both the CSAttribute and Attribute directives in the control file, the validity of the attribute name and the legality
of the value must be checked for both Verilog and VHDL based designs. For string valued attributes, the actual
check is done by the destined client of the attribute (for example the placement_force value will only be checked by
the appropriate fitter). The following example shows how Attribute, CSAttribute and FixedAttribute match with
Verilog and VHDL source code.

Pattern Source
Identifier

VDHL Source
Match

Verilog Source
Match

attribute ff_type of mysig : signal is ff_d mysig

Mysig

MYSIG

mySig

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

csattribute ff_type of mysig : signal is ff_d mysig

Mysig

MYSIG

mySig

Yes

Yes

Yes

Yes

Yes

No

No

No

fixedattribute ff_type of mysig : signal is

ff_d
mysig

Mysig

MYSIG

mySig

Yes

Yes

Yes

Yes

Yes

No

No

No

See Also:

◼ Control File

Control File Format

The format of the control file is as follows:

◼ A comment begins with "--" and terminates at the end of the line.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 341

◼ The lines in the control file contain attribute, csattribute, or fixedattribute statements.

◼ The line must start with one of the keywords: attribute, csattribute, or fixedattribute.

The syntax for the attribute, csattribute and fixedattribute statements in the control file are as follows:

attribute attribute_name [of] pattern [:] [object-class] [is] value ;

csattribute attribute_name [of] pattern [:] [object-class] [is] value ;

fixedattribute attribute_name [of] identifier [:] [object-class] [is] value ;

All the words in the above lines except for the pattern and identifier are treated in a case-insensitive manner. The
pattern is interpreted as described in Control File Pattern Matching. The default object-class is a SIGNAL. However
object-class can be:

◼ label

◼ entity

◼ module

◼ architecture

◼ signal

For VHDL designs, attribute statements can be present in both the control file and in the source. A control file
attribute will take precedence over the source file attribute. If there is a specific attribute in the source and a
matching attribute line in the control file, the attribute in the control file will take precedence.

A specifically applied attribute takes precedence over a hierarchically applied attribute.

Attribute_name:

Attribute_name is the directive name.

Patterns/Identifiers:

The name of the object upon which the directive is being placed can be specified as an identifier (simple,
extended/escaped) or as a pattern. Individual bits of an array are represented by enclosing the integer in
parentheses.

In the control file, Warp accommodates both VHDL extended identifiers and limited Verilog escaped identifiers. An
extended or escaped identifier always starts with a backslash. It is terminated with the first unescaped backslash if
it exists, or the first encountered white space if there is no trailing backslash terminator. A backslash within a VHDL
extended identifier is escaped by preceding it with another backslash.

In the case of Verilog escaped identifiers, no embedded backslashes are allowed in the control files. For example,
even though '\foo\bar ' is a valid escaped identifier in Verilog, it is not valid in the control file. The limited version of
the escaped identifiers are added as a convenience to the user and the recommendation is to always use VHDL
style extended identifiers.

Note Names with [] need to be replaced with wildcards instead of the []. For example:

attribute placement_force of \Sync:genblk1[0]:INST\ : label is "U(0,0)2"

becomes:

attribute placement_force of \Sync:genblk1?0?:INST\ : label is "U(0,0)2"

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 342

Optional Keywords:

The keywords "of" and "is" are optional and are simply ignored.

Object-Class:

Object-class refers to the type of HDL object. If the object-class is not specified, a signal is assumed. For VHDL,
valid classes include entity, architecture, Component, and label. The label class can be used to specify a directive
intended for a Component instantiation. For Verilog, valid classes include module, label, and signal.

Directive Terminator:

A directive is terminated either with a new line, a semi-colon, or a comment.

Value:

Value is the value of the directive.

Control File Pattern Matching

The object name portion of an attribute specification in a control file can be more than just a name -- it is actually a
pattern; the attribute will be applied to any object (of the right type) whose name is matched by the pattern. The
pattern is composed of normal characters, which must match exactly in a case sensitive or insensitive manner
depending on the attribute type. These are the additional wildcard constructs, shown in the following table:

Characters/Constructs Definition

* represents a match with zero or more characters

? represents a match with exactly one character

[c-c] represents a single character in the given ASCII character range that has to be matched.

[0-9] represents a single character in the given ASCII character range that has to be matched.

[ccc] represents a list of characters to match.

While constructing the pattern, the characters are treated as case sensitive. The matching still depends on the
attribute directive type (Attribute, CSAttribute). The pattern matching characters and wildcard constructs are treated
as character literals when enclosed in []. The pattern matching is always a complete match.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 343

PSoC UDBs in PSoC Creator

PSoC Creator refers to the universal digital blocks (UDBs) by their location in the UDB grid (Row, Column format
[UDB=(0,2)]) in the report file (see Generated Files) and in the Directives Editor. This is different than how the
device Technical Reference Manuals (TRMs) reference UDBs (Bank Number, Udb in Bank, for example, Bank 0,
Udb 11).

In the PSoC Creator report files, the UDB elements are referred to with a naming convention different than given in
the TRM. The notation used is U (row, column) where the row and column are based on a grid with 0,0 in the upper
left corner of the UDB array. The mapping from the grid-based to TRM-based naming convention is shown in the
following examples:

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 344

Directives

Directives may be used to influence the implementation of a design. They are used in an iterative fashion to refine,
improve, or constrain the results of synthesis. Directives may be applied to Components that have been either
instantiated in a schematic or inferred by the synthesizer from Verilog HDL code.

Directive Format Summary:

The following table summarizes the directives used in PSoC Creator.

Directive Target Format Location
values

Placement Directives

placement_force Arbitrary logic attribute placement_force of signal_name : signal is "string"; U(1,2)A

or

U(1,2,A)3

placement_force Fixed function attribute placement_force of Component_name : label is "string"; F(Timer,3)

or

F(DFB,0)

placement_force UDB Component attribute placement_force of Component_name : label is "string"; U(3,2)

port_location IO Port attribute port_location of bit_name : label is "string"; PORT(2,3)

placement_group Arbitrary logic attribute placement_group of signal-name : signal is "string" ; group_1

synchronization_needed IO Port attribute synchronization_needed of signal_name : signal is
"string";

AUTO

or

SYNC

or

NOSYNC

Synthesis Directives

no_factor Arbitrary logic attribute no_factor of signal_name : signal is value;

opt_level Arbitrary logic attribute opt_level of signal_name : signal is integer; 2 or 1 or 0

synthesis_off Arbitrary logic attribute synthesis_off of signal_name : signal is value; false or
true

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 345

Directive Implementation on Different Devices

In cases where there are multiple directives of the same type in a design, and if the directives force the same block
to different locations on the device, there is a difference in how the directives are applied between FM0+ devices
and PSoC devices. For example:

attribute port_location of pin_1(0) : label is "PORT(2,3)";

attribute port_location of pin_1(0) : label is "PORT(2,5)";

For FM0+ devices, the first directive is selected and applied; the pin instance will be forced to pin P2[3]. This
behavior is true for placement_force and port_location directives on FM0+ devices.

For PSoC devices, the last directive is selected and applied; the pin instance will be forced to port P2[5]. This
behavior is true for all directives on PSoC devices.

placement_force:

The placement_force directive aids in locking down signals and associated Components to particular locations in
the fitter. Typically the fitter positions Components in an optimal location on the device; however, you might want to
constrain the fitter to position Components in specific locations.

attribute placement_force of signal_name : signal is "string";

attribute placement_force of Component_name : label is "string";

Note The Component whose placement is to be forced may be embedded within the hierarchical implementation of
a Component on the top level schematic (TopDesign). If so, it is necessary to use the full hierarchical Component
name. The easiest way to find this name is to build the project and search in the report file, under "Final Placement
Summary," for the name of the instance on the top-level schematic. This will locate all child instances contained
within the top-level instance.

The string is a location descriptor of either a programmable logic block, macrocell, UDB element, or fixed function
block. Each has its own format and meaning specific to the object being addressed.

◼ For an element of a UDB (Datapath, status register, etc.), it can be constrained to a specific UDB. The format to
specify this is U(x,y) where x,y is the UDB row and column. For the attribute to be recognized, the attribute

must be assigned to the Component using the version of the attribute with the label keyword for it to have an
effect. An example of this would be:

attribute placement_force of \test_control:ctrl_reg : label is "U(3,5)";

Note When specifying the location of a datapath chain, the attribute must be applied to the first datapath in
the chain for it to have an effect.

◼ In the case of a set of random logic, it can be constrained to a specific PLD within a specific UDB. The format to
specify this is U(x,y)l where x,y is the UDB row and column and l is the PLD descriptor ("A" or "B" to

denote one of the two PLDs within a UDB). This will still allow the fitter to choose a macrocell column that best
fits the design layout. For the attribute to be recognized, the attribute must be assigned to the output signal
from the macrocell for it to have an effect. An example of this would be:

attribute placement_force of out_1 : signal is "U(2,4)A";

◼ It is also possible to constrain a set of random logic to a particular macrocell column within a specific PLD on a
specific UDB. The format to specify this is: U(x,y,l)i where x,y is the UDB row and column, l is the PLD

descriptor ("A" or "B" to denote one of the two PLDs within a UDB) and I is the macrocell index within the PLD.
For the attribute to be recognized, the attribute must be assigned to the output signal from the set of random
logic for it to have an effect. An example of this would be:

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 346

attribute placement_force of out_2 : signal is "U(1,3,A)2";

◼ The attribute should be applied directly to any fixed function Components by referencing them by name
(instead of referencing a signal) by using the label keyword. The format for the “label” is F(block_type,index),
where the block_type is the keyword descriptor for the block, and index is the instance of that block to use. The
valid set of keywords are: CAN, Comparator, DFB, DSM, Decimator, EMIF, I2C, SC, Timer, USB, VIDAC, Abuf,
Lpf:

attribute placement_force of \Timer_1:TimerHW\ : label is "F(Timer,1)";

◼ This attribute can be applied to a DMA Component to force the use of a particular channel. The format for the
location string is:

DMA(0, channel_id)

On PSoC 6 devices, channels are spread across multiple controllers; however, this is still specified in the
directive as a single channel id. To force placement to controller C, channel N, use the following:

channel_id = C * channels_per_controller + N

To find channels_per_controller, look at the value of CPUSS_DW_CH_NR in the PDL series_config.h file

(e.g., psoc63_config.h) for your device.

The Directives Editor does not support forcing DMA placement; you must use a control file instead.

port_location:

The port_location directive maps the external signals of the design to pins on the target device based on the
location of that pin within the device, not on the package. The syntax for the directive is:

attribute port_location of bit_name : label is "string";

The format for the string to describe the location is PORT(port_index, pin_index) where port_index is the number of
the port on the device and pin_index is the pin within the port.

An example for this directive:

attribute port_location of pin_1(0) : label is "PORT(2,3)";

Note When using this directive to fix the location of a contiguous pin group, the attribute should be applied to the
first pin.

placement_group:

The placement_group directive can be used to group a set of signals (that relate to arbitrary logic, not fixed function
Components) and to ask the place and route tool to place these signals together. The place and route tool will
attempt to place all signals that have the same group identifier together in a minimal number of PLDs. The format
of this directive is:

attribute placement_group of signal-name : signal is "string" ;

The string used can be any user defined string that is used to uniquely identify a group (see examples below). The
group identifier is case insensitive. The following example will attempt to put the logic driving signal2 and signal3
together:

attribute placement_group of signal2: signal is "group1" ;

attribute placement_group of signal3: signal is "group1" ;

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 347

synchronization_needed:

The synchronization_needed directive can be used to modify the default synchronization behavior for the IOs of the
part. By default, IOs used as inputs are synchronized and IOs used for outputs are unsynchronized.

attribute synchronization_needed of signal-name : signal is "string" ;

attribute synchronization_needed of logical-port-name(pin-index) : label is "string" ;

The synchronization_needed attribute can take the value of a string. This string value can be one of AUTO, SYNC,
or NOSYNC. Examples of the use of the attribute would be:

attribute synchronization_needed of Terminal_1 : signal is "SYNC" ;

attribute synchronization_needed of dport_1(2) : label is "NOSYNC" ;

no_factor:

The no_factor directive prevents logic factoring within the Warp synthesis engine to prevent splitting said node.

attribute no_factor of signal_name : signal is value;

During the optimization phase, the Warp synthesis engine aliases signals which have identical drivers (equations).
Using this directive causes equations to bypass these two actions. This feature can be useful if the design
constraints cause certain identical logic to be duplicated or if the logic factoring algorithm is being overaggressive.

Examples:

This example prevents the signal my_signal from being aliased or from being factored.

attribute no_factor of my_signal : signal is true;

In Verilog designs, attributes can be placed on all signals in a module as follows:

attribute no_factor of my_module : module is true;

This example prevents all signals in my_module from being aliased or factored.

opt_level:

The opt_level directive instructs Warp on the amount of effort that should be spent optimizing certain signals.

attribute opt_level of signal_name : signal is integer;

The integer represents the amount of effort. Currently, there are three levels of effort (0, 1 and 2). An opt_level of 0
instructs Warp to turn off all optimization on said signal. This directive is also passed along to the PLD/CPLD fitters
which do the same thing. An opt_level of 1 causes Warp to perform a simple and quick optimization of equations.
An opt_level of 2 causes Warp to perform the highest level of optimization available. An opt_level of 2 is
recommended for all designs.

Example:

This directive disables all optimization on the signal my_signal.

attribute opt_level of my_signal : signal is 0;

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 348

synthesis_off:

The synthesis_off directive controls the flattening and factoring of expressions feeding signals for which the
directive is set to true. This directive causes a signal to be made into a factoring point for logic equations, which
keeps the signal from being substituted out during optimization.

attribute synthesis_off of signal_name : signal is value;

The synthesis_off directive can only be applied to signals. The default value of the synthesis_off directive for a
given signal is false. This directive gives the user control over which equations or sub-expressions need to be
factored into a node (i.e., assigned to a physical routing path).

◼ When set to true for a given signal, synthesis_off causes that signal to be made into a node (i.e., a factoring
point for logic equations) for the target technology. This keeps the signal from being substituted out during the
optimization process. This can be helpful in cases where performing the substitution causes the optimization
phase to take an unacceptably long time (due to exponentially increasing CPU and memory requirements) or
uses too many resources.

◼ Making equations into nodes forces signals to take an extra pass through the array, thereby decreasing
performance, but may allow designs to fit better.

◼ The synthesis_off directive should only be used on combinational equations. Registered equations are natural
factoring points; the use of synthesis_off on such equations may result in redundant factoring.

Example:

This example sets the synthesis_off directive to true for a signal named sig1.

attribute synthesis_off of sig1:signal is true;

See Also:

◼ Directives Editor

◼ Control File

Generated Files (PSoC 3, PSoC 4, PSoC 5LP)

Upon a successful build, PSoC Creator generates various files that become a part of your design. These files are
listed in the Workspace Explorer under the Source tab. These files are specific to the device family (PSoC 3, PSoC
4, or PSoC 5LP) and the selected compiler. The following lists and describes the files generated from a build.

File(s) Description

cy_boot (Refer also to the System Reference Guide.)

 CyBootAsmKeil.a51 (PSoC 3)

 CyBootAsmIar.s (PSoC 4/5LP IAR)

 CyBootAsmGnu.s (PSoC 4/5LP GCC)

 CyBootAsmRv.s (PSoC 4/5LP MDK)

Provides device- and toolchain-specific assembly implementations for
startup and time critical routines.

 CyDmac.c /.h The software API for using the DMA Controller.

 CyFlash.c /.h The software API for writing to flash.

 CyLib.c /.h The software APIs for power management, string/character routines,
memory manipulation, as well as enabling/disabling selected portions of
the PSoC device.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 349

File(s) Description

 cypins.h Contains the function prototypes and constants used for port/pin access
and control.

 cyPm.c/.h Provides the function definitions for the power management API.

 CySpc.c /.h The software API for writing to the System Performance Controller.

 cytypes.h Provides macros and defines to allow code to be written tool chain and
processor agnostic.

 cyutils.c Implements low-level utility functions used to provide tool chain/processor
agnostic functions. Exposed in cytypes.h.

 cymem.a51 (PSoC 3) Specialized memory routines for Keil boot-up.

 KeilStart.a51 (PSoC 3) Bootup code for PSoC 3 chips using Keil tools.

 Cm3Start.c/Cm0Start.c/Cm0pStart.c Startup code for the ARM CM3/CM0/CM0+.

 PSoC3_8051.h /.inc (PSoC 3) 8051 register definitions for the PSoC 3 architecture.

 cm3gcc.ld/cm0gcc.ld Linker script for the GCC toolchain

 Cm3RealView.scat/Cm0RealView.scat Scatter file for the RealView & MDK toolchains

 core_cm0.h or core_cm3.h

 core_cmFunc.h and core_cmInstr.h

CMSIS standard libraries for Cortex-M series of processors: core_cm0.h
for PSoC 4/core_cm3.h for PSoC 5LP.

Both files included for PSoC 4/PRoC BLE and PSoC 5LP.

 core_cm0_psoc4.h or
core_cm3_psoc5.h

PSoC 4/PRoC BLE or PSoC 5LP specific interrupt information for CMSIS
libraries.

General

 cydevice_trm.h Defines all of the addresses in the configuration space of the device.
These addresses do not contain any context information related to
instances drawn in your design(s). You should not need to use any of
these addresses directly.

 cydevice.h (PSoC 3/PSoC 5LP) Deprecated version of cydevice_trm.h.

 cydevicekeil_trm.inc (PSoC 3)

 cydevicegnu_trm.inc (PSoC 5LP /
PSoC 4 GCC)

 cydevicerv_trm.inc (PSoC 5LP / PSoC
4 MDK)

 cydeviciar_trm.inc (PSoC 5LP / PSoC
4 IAR)

Defines all of the addresses in the configuration space of the device for the
specific toolchain. These addresses do not contain any context information
related to instances drawn in your design(s). You should not need to use
any of these addresses directly.

 cydevicekeil.inc (PSoC 3)

 cydevicegnu.inc (PSoC 5LP GCC)

 cydevicerv.inc (PSoC 5LP Real View)

Deprecated version of cydevicekeil_trm.inc, cydevicegnu_trm.inc, or
cydevicerv_trm.inc.

 cyfitter.h Defines all of the instance specific addresses calculated by the Code
Generation step. This file is mainly intended for use by instance API
implementations, although advanced users may find interesting information
in this file.

 cyfitter_cfg.c Implements the methods and logic necessary to configure the device
before main. You should not need to use anything implemented in this file.

 cyfitter_cfg.h Contains definitions used by the boot firmware to configure the device
before main. You should not need to use anything defined in this file.

 cyfitterkeil.inc (PSoC 3)

 cyfittergnu.inc (PSoC 5LP / PSoC 4
GCC)

 cyfitterrv.inc (PSoC 5LP / PSoC 4
MDK)

Assembly equivalent of cyfitter.h.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 350

File(s) Description

 cyfitteriar.inc (PSoC 5LP / PSoC 4
IAR)

 project.h This file includes all of the other header files found in this directory and its
sub-directories. It exists for convenience sake, allowing you to include all
of the generated headers with just one #include statement.

Boot Component:

All design projects include a "boot" Component to provide version control for all the boot firmware files, such as
CyDma*, CyFlash*, etc. The Component is hidden in the Component Catalog by default, and it cannot be placed
onto a design. The files from the boot Component get deposited into a folder named
"Generated_Source/<Architecture Name>/cy_boot" in the Workspace Explorer after a successful build.

Designs created with earlier releases of PSoC Creator will include earlier versions of the boot Component, which
contains all the API files as they were. If updated API files are needed, use the Component Update Tool to upgrade
the boot Component to the latest version.

Refer also to the System Reference Guide.

Component APIs:

The generated source will also include APIs for instantiated Components (e.g., counter_1.c, counter_1INT.c,
counter_1.h), which will be listed in device-specific folders. If you do not want APIs generated for a specific
instance, use the built-in parameter CY_SUPPRESS_API_GEN. See Configure Component Parameters for more
information.

Results Files:

The Workspace Explorer also contains the Results tab, which contains the following files:

◼ <project>.cycdx – This contains XML information specific to Component debug windows. This is used by the
debugger to determine what to display for the design. There is no reason for you to open or modify this file. For
more information about this file, refer to the Component Author Guide.

◼ <project>.rpt – This is the project report file. It contains information for how the device was programmed,
including a section on how the target device's resources were utilized. Advanced users can review the
information in this file to determine if there might be better ways to configure the design.

◼ <project>_timing.html – This is the Static Timing Analysis report. See Static Timing Analysis for more
information.

The Results tab may also contain various other files, including

◼ <project>.cyfit – This file is an internal database for PSoC Creator to hold data on the results of Code
Generation. A user will not interact with this file directly. It is regenerated each time the project is built.

◼ <project>.elf – This file contains debugging information for the GCC tool chains. A user will not interact with this
file directly.

◼ <project>.ihx (PSoC 3 only) – Intel HEX file produced by building the project, containing only the compiled
design. A user will not interact with this file directly.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 351

◼ <project>.hex – Intel HEX file produced by combining <project>.ihx file with selected protection, configuration,
and initialization settings. A user will not interact with this file directly.

◼ <project>.map – This file is produced by the linker. It contains details on how the device's memory was used,
where functions and variables were placed and other details depending on the tool chain. A user will not
interact with this file directly.

◼ <file>.lst – Code listing file showing initial c code and generated assembly. A user will not interact with this file
directly.

◼ <project>.omf (PSoC 3 only) – This file contains debugging information output by the Keil toolchain. A user will
not interact with this file directly.

See Also:

◼ Workspace Explorer

◼ Component Catalog

◼ Component Update

◼ Static Timing Analysis

Generated Files (PSoC 6)

Upon a successful build, PSoC Creator generates various files that become a part of your design. These files are
listed in the Workspace Explorer under the Source tab. These files are specific to the device family and the
selected compiler. The following lists and describes the files generated from a build.

File(s) Description

Header Files

 cy_ipc_config.h Defines a device-specific configuration for the IPC channels and pipes.

 cyapicallbacks.h Used to specify macro callbacks here. For more information, refer to the Writing Code topic in
the PSoC Creator Help.

Source Files

 cy_ipc_config.c Code required to configure the device-specific IPC channels for locks and pipes.

 main.c or main_cm0.c,
 and main_cm4.c

Empty shell file to write your application code. This file is not overwritten.

pdl

 All files in this folder are copied from the installed peripheral driver library (PDL). See Options Dialog.

Pins and Interrupts

 All files in this folder contain pin and interrupt defines and structures for each of the Components in the design.

General

 cycodeshareexport.ld GCC Linker script for exporting symbols from one application to be used in a second
application.

 cycodeshareImport.ld GCC Linker script for importing symbols from a different application.

 cycodeshareimport.scat MDK Scatter file for importing symbols from a different application.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 352

File(s) Description

 cydevice_trm.h Defines all the addresses in the configuration space of the device. These addresses do
not contain any context information related to instances drawn in your design(s). You
should not need to use any of these addresses directly.

 cydevicegnu_trm.inc Defines all the addresses in the configuration space of the device for the GNU assembler
(gas). These addresses do not contain any context information related to instances drawn

in your design(s). You should not need to use any of these addresses directly.

 cydeviceiar_trm.inc Defines all the addresses in the configuration space of the device for the IAR assembler.
These addresses do not contain any context information related to instances drawn in
your design(s). You should not need to use any of these addresses directly.

 cydevicerv_trm.inc Defines all the addresses in the configuration space of the device for the Real View
assembler. These addresses do not contain any context information related to instances
drawn in your design(s). You should not need to use any of these addresses directly.

 cydisabledsheets.h File of defines for disabled schematic pages.

 cyfitter.h Defines all the instance specific addresses calculated by the Code Generation step. This
file is mainly intended for use by instance API implementations, although advanced users
may find interesting information in this file.

 cyfitter_cfg.c Implements the methods and logic necessary to configure the device before main. You
should not need to use anything implemented in this file.

 cyfitter_cfg.h Contains definitions used by the boot firmware to configure the device before main. You
should not need to use anything defined in this file.

 cymetadata.c This file defines all extra memory spaces that need to be included. This file is
automatically generated by PSoC Creator.

 project.h This file includes all the other header files found in this directory and its sub-directories. It
exists for convenience sake, allowing you to include all the generated headers with just
one #include statement.

Component APIs:

The generated source will also include APIs for instantiated Components (e.g., counter_1.c, counter_1INT.c,
counter_1.h), which will be listed in device-specific folders. If you do not want APIs generated for a specific
instance, use the built-in parameter CY_SUPPRESS_API_GEN. See Configure Component Parameters for more
information.

Results Files:

The Workspace Explorer also contains the Results tab, which contains the following files:

◼ <project>.cycdx – This contains XML information specific to Component debug windows. This is used by the
debugger to determine what to display for the design. There is no reason for you to open or modify this file. For
more information about this file, refer to the Component Author Guide.

◼ <project>.rpt – This is the project report file. It contains information for how the device was programmed,
including a section on how the target device's resources were utilized. Advanced users can review the
information in this file to determine if there might be better ways to configure the design.

The Results tab may also contain various other files, including

◼ <project>.cyfit – This file is an internal database for PSoC Creator to hold data on the results of Code
Generation. A user will not interact with this file directly. It is regenerated each time the project is built.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 353

◼ <project>.elf – This file contains debugging information for the tool chains. A user will not interact with this file
directly.

◼ <project>.hex – Intel HEX file produced by post-processing the <project>.elf file. This file contains all the
information necessary to program your device, without any of the debug information found in the elf file. A user
will not interact with this file directly.

◼ <project>.map – This file is produced by the linker. It contains details on how the device's memory was used,
where functions and variables were placed and other details depending on the tool chain.

◼ <file>.lst – Code listing file showing initial c code and generated assembly.

Generate Source Files MISRA Compliance

There is no System Reference Guide for PSoC 6 devices, so there is no general section for MISRA (Motor Industry
Software Reliability Association) violation information. The MISRA specification covers a set of 122 mandatory rules
and 20 advisory rules that apply to firmware design and has been put together by the Automotive Industry to
enhance the quality and robustness of the firmware code embedded in automotive devices.

For PSoC 6 devices, most MISRA documentation is located in the PDL API Documentation. However, there are
several generated files from PSoC Creator that are not contained in that guide. The following sections contain
MISRA information for those generated files.

There are two types of deviations defined:

◼ project deviations - deviations that are applicable for all PSoC Creator components

◼ specific deviations - deviations that are applicable for the specific component

Verification Environment

This section provides MISRA compliance analysis environment descriptions.

Component Name Version

Test Specification MISRA-C:2004 Guidelines for the use of the C language in

critical systems.

October 2004

Target Device PSoC 6 Production

Target Compiler Generation

Tool

GCC 5.4

MDK 4.72a

PSoC Creator 4.x

Programming Research QA C source code analyzer for

Windows

8.2-R

MISRA Checking Tool Programming Research QA C MISRA-C:2004 Compliance

Module (M2CM)

3.2

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 354

Project Deviations

Project Deviations are defined as permitted relaxations of the MISRA rules requirements that apply to source code
that is shipped with PSoC Creator. The list of deviated rules is provided in the table below.

MISRA-C:
2004 Rule

Rule Description Description of Deviation(s)

1.1 This rule states that code shall conform to C
ISO/IEC 9899:1990 standard.

Some C language extensions (like interrupt keyword) relate
to device hardware functionality and cannot be practically
avoided.

In the main.c file that is generate by PSoC Creator the non-
standard main() declaration is used: “void main()”. The
standard declaration is “int main()”

The number of macro definitions exceeds 1024 - program
does not conform strictly to ISO:C90.

Structures in the generated files are using designators in the
initialization. This is allowed by ISO/IEC 9899:1999.

5.1 This rule says that both internal and external
identifiers shall not rely on the significance of
more than 31 characters.

The length of names based on user-defined names depends
on the length of the user-define names.

8.7 Objects shall be defined at block scope if they are
only accessed from within a single function.

The object 'InstanceName_initVar' is only referenced by
function 'InstanceName_Start', in the translation unit where it
is defined. The intention of this publicly available global

variable is to be used by user application.

11.3 This rule states that cast should not be performed
between a pointer type and an integral type.

The cast from unsigned int to pointer does not have any
unintended effect, as it is a consequence of the definition of

a structure based on hardware registers.

14.1 There shall be no unreachable code. Some functions that are part of the component API are not
used within component API. Components API are designed
to be used in user application and might not be used in
component API.

21.1 Minimization of run-time failures shall be ensured
by the use of at least one of:

a) static analysis tools/techniques;

b) dynamic analysis tools/techniques;

c) explicit coding of checks to handle run-time
faults.

Some components in some specific configurations can
contain redundant operations introduced because of
generalized implementation approach.

Documentation Related Rules

This section provides information on implementation-defined behavior of the toolchains supported by PSoC
Creator. The list of deviated rules is provided in the table below.

MISRA-C:
2004 Rule

Rule Description Description

1.3 Multiple compilers and/or languages shall only
be used if there is a common defined interface
standard for object code to which the
languages/compilers/assemblers conform.

No multiple compilers and languages can be used at a
time for PSoC Creator projects.

The PK51 linker produces OMF-51 object module format.
The GCC linker produces EABI format files. The MDK
linker produces files of ARM ELF format.

1.4 The compiler/linker shall be checked to ensure
that 31 character significance and case
sensitivity are supported for external identifiers.

PK51 and GCC treat more than 31 characters of internal
and external identifier length, and are case sensitive (e.g.,
Id and ID are not equal).

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 355

MISRA-C:
2004 Rule

Rule Description Description

1.5 Rule states that floating-point implementation
should comply with a defined floating-point
standard.

Floating-point arithmetic implementation conforms to
IEEE-754 standard.

3.1 All usage of implementation-defined behavior
shall be documented.

For the documentation on PK51 and GCC compilers,
refer to the Help menu, Documentation sub-menu, Keil
and GCC commands respectively.

3.2 The character set and the corresponding
encoding shall be documented.

The Windows-1252 (CP-1252) character set encoding is
used.

Some characters that are used for source code
generation in PSoC Creator are not included in character
set, defined by ISO-IEC 9899-1900 "Programming
languages — C".

3.3 This rule states that implementation of integer
division should be documented.

When dividing two signed integers, one of which is
positive and one negative compiler rounds up with a
negative remainder.

3.5 This rules requires implementation defined
behavior and packing of bit fields be
documented.

The use of bit-fields is avoided.

3.6 All libraries used in production code shall be
written to comply with the provisions of this
document, and shall have been subject to

appropriate validation.

The C standard libraries provided with C51, GCC, and
RVCT have not been reviewed for compliance. Some
code uses memset and memcpy. The compiler may also

insert calls to its vendor-specific compiler support library.

PSoC Creator Generated Sources Deviations

This section provides the list of deviations that are applicable for the code that is generated by PSoC Creator. The
list of deviated rules is provided in the table below.

MISRA-C:
2004 Rule

Rule Description Description of Deviation(s)

8.8 An external object or function shall be declared in one
and only one file

For the PSoC 6, some objects are declared with
external linkage, and their declarations are not in
header files.

10.1 An integer constant of 'essentially signed' type is being
converted to unsigned type on assignment.

An integer constant of 'essentially unsigned' type is
converted to signed type on assignment in

cyfitter_cfg.c.

11.4 Cast from a pointer to void to a pointer to object type. The Amux API uses casts between a pointer to an
object type and a different pointer to an object type.

14.1 Rule requires that there shall be no unreachable code. The CYMEMZERO(),CYCONFIGCPYCODE () and
CYCONFIGCPY() are not always used in the design.

15.2 An unconditional break statement shall terminate
every non-empty switch clause.

This code structure is required to ensure that the GCC
compiler produces efficient code for generated
functions related to the AMuxSeq component.

15.3 The final clause of a switch statement shall be the
default clause.

The code structure is required to ensure that the GCC
compiler produces efficient code for generated
functions related to the AMuxSeq component.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 356

See Also:

◼ Workspace Explorer

◼ Component Catalog

◼ Component Update

◼ PDL API Documentation (located on the Workspace Explorer Documentation tab)

Generated Files (FM0+)

Upon a successful build, PSoC Creator generates various files that become a part of your design. These files are
listed in the Workspace Explorer under the Source tab. These files are specific to the device series (FM0+) and the
selected compiler. The following lists and describes the files generated from a build.

File(s) Description

pdl

 All files in this folder are copied from the installed peripheral driver library (PDL). See Options Dialog.

General Files

 cydisabledsheets.h File of defines for disabled schematic pages.

 cyfitter.h Defines all of the instance specific addresses calculated by the Code
Generation step. This file is mainly intended for use by instance API
implementations, although advanced users may find interesting information in
this file.

 cymetadata.c This file defines all extra memory spaces that need to be included. This file is
automatically generated by PSoC Creator.

 pdl_user.h User settings header file for Peripheral Driver Library.

 project.h This file includes all of the other header files found in this directory and its sub-
directories. It exists for convenience sake, allowing you to include all of the
generated headers with just one #include statement.

<device>_rom.icf Generated IAR linker file for the device. Do not touch.

<device>_rom.id Generated GCC linker file for the device.

<device>_rom.sct Generated MDK scatter file for the device.

Component APIs:

The generated source will also include APIs for instantiated Components (e.g., counter_1.c, counter_1INT.c,
counter_1.h), which will be listed in device-specific folders. If you do not want APIs generated for a specific
instance, use the built-in parameter CY_SUPPRESS_API_GEN. See Configure Component Parameters for more
information.

Results Files:

The Workspace Explorer also contains the Results tab, which contains the following files:

◼ <project>.cycdx – This contains XML information specific to Component debug windows. This is used by the
debugger to determine what to display for the design. There is no reason for you to open or modify this file. For
more information about this file, refer to the Component Author Guide.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 357

◼ <project>.rpt – This is the project report file. It contains information for how the device was programmed,
including a section on how the target device's resources were utilized. Advanced users can review the
information in this file to determine if there might be better ways to configure the design.

The Results tab may also contain various other files, including

◼ <project>.cyfit – This file is an internal database for PSoC Creator to hold data on the results of Code
Generation. A user will not interact with this file directly. It is regenerated each time the project is built.

◼ <project>.elf – This file contains debugging information for the GCC tool chains. A user will not interact with this
file directly.

◼ <project>.hex – Intel HEX file produced by combining <project>.ihx file with selected protection, configuration,
and initialization settings. A user will not interact with this file directly.

◼ <project>.map – This file is produced by the linker. It contains details on how the device's memory was used,
where functions and variables were placed and other details depending on the tool chain. A user will not
interact with this file directly.

◼ <file>.lst – Code listing file showing initial c code and generated assembly. A user will not interact with this file
directly.

See Also:

◼ Workspace Explorer

◼ Component Catalog

◼ Component Update

Source Code Control

PSoC Creator does not include integration with any source code control or revision control system. However you
can use any source code control system to check PSoC Creator files in and out as you work.

This topic describes the various files and folders that should be committed to a source code control system. You
should always include any file you have created or edited. If one or more of these files is not available in future
check outs, the project may not load correctly, PSoC Creator may generate errors, or you may lose user-specific
code.

See also Cypress Knowledge Base Article: Revision Control for PSoC® Creator™ Projects - KBA86358
(http://www.cypress.com/?id=4&rID=76644)

Note The more files you include in source control, the more that may need to be checked out to be updated. Files
should not be left in a "read-only" state, because this will limit PSoC Creator's functionality.

Project Files/Folders

The following are the project files and folders to include in source code control. There are two types of projects:
design and library. Design project files are contained in a folder named <project>.cydsn. Library project files are
contained in a folder named <project>.cylib.

As indicated in the following list, some files are common to both types of projects, while others are specific to
design projects only. As a general rule, include all of these files and subfolders in source code control.

http://www.cypress.com/?id=4&rID=76644

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 358

◼ <project>.cyprj – This is the project file and is common to both types of projects. It is a container file for all the
files in your project.

◼ <project>.cydwr – This is the design-wide resources file for your design project. See Design-Wide Resources.

◼ <project>.cyre – This is the Keil reentrancy file, used for design projects only.

◼ main.c – This is the main application file, which contains all the user-specific application code for your design
project.

◼ Added source files – If you added any C source, header, or assembly files to any project, they will be contained
in the project folder or a subfolder.

◼ /TopDesign (folder) /TopDesign.cysch (binary) – This is the main schematic file for your design project.

◼ /<added_project>.cydsn (folder) – If you have additional design projects in your workspace, there will be one or
more folders for those project files.

◼ /<added_project>.cylib (folder) – If you have additional library projects in your workspace, there will be one or
more folders for those project files.

◼ /<Component_name> (folder) – If you have created a Component within your project, there will be a folder with
that Component's name. That folder contains all the files you added and edited as part of creating the
Component.

◼ <project>.cyfit – This file is an internal database for PSoC Creator to hold data on the results of Code
Generation. It is regenerated each time the project is built. A user will not interact with this file directly. However,
this file should be kept with the rest of a 'completed' project as it contains information needed when
opening/reviewing a project.

XML-Based Description Files

PSoC Creator provides an optional feature to generate two XML-based files that describe the contents of various
design entry files (schematic, schematic macro, symbol, UDB, and sheet template). See Generating Description
Files for more information.

◼ <project>.cysem – This file contains all the semantically meaningful data from the source.

◼ <project>.cyvis – This file includes the cosmetic information from the source.

There can be several sets of these .cysem and .cyvis files in a project, depending on the types of design entry files
you create in a project.

Optional Files

These files control the user experience (look and feel, open files in the workspace, and so on) but do not impact the
application:

◼ <project>.cyprj.username

◼ ..\<workspace>.cywrk

◼ ..\<workspace>.cywrk.username

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 359

Generated Source and Output Files

If you have built a project, there will be a Generated_Source folder with various Component and compiler files. See
Generated Files for descriptions of these files. Under usual circumstances, you do not need to include most of
these files and folders in source code control, because they will be regenerated by PSoC Creator during a build.
However, there are some cases where you may want to include them:

◼ If a generated file is located on disk and has not changed from a previous build, PSoC Creator will not
regenerate that file. So you may wish to include some of these files in source code control to speed up future
builds.

◼ If you have included any user-specific code in merge regions of any of these files, then you should include
those files in source code control.

◼ If you have set the Build Settings Skip Code Generation option to "True," then PSoC Creator will not
regenerate any of these files. Therefore they must be available or PSoC Creator will not build.

◼ You have modified the default ARM linker files (cm3gcc.ld or cm3RealView.scat), you should add them to
source control.

External Source Files

If your project includes source files located outside the directories specified here, add them to your revision control
system.

Temporary Folders

As part of a build, PSoC Creator generates temporary folders, such as codegentemp, DP8051, ARM_GCC, etc.
None of these folders or files in them should be included in source code control.

Archiving Tool

As an alternate to manually selecting files for source code control, you can use the Archiving Tool. This tool allows
you to periodically save all the necessary project/workspace files to a location you specify. You can save the files in
one zip file or save the entire directory structure unzipped. You can also choose different levels of files to save.

See Also:

◼ Project Types

◼ Design-Wide Resources

◼ Reentrant Code in PSoC 3

◼ Generated Files

◼ Generating Description Files

◼ Build Settings

◼ Archiving a Workspace/Project

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 360

Static Timing Analysis

As part of a successful build, PSoC Creator performs static timing analysis (STA) on your design automatically to
determine various timing aspects, such as:

◼ Propagation Delay: Purely combinational delay from an input to an output.

◼ Clock-to-output Delay: Delay from a clock source through a register to an output.

◼ Setup Time: The minimum length of time that data must arrive at the input pin before the register’s clock signal
is asserted at the clock pin.

◼ Register-to-register Delay: Delay from the output of a register to the input of a register. The static timing
analyzer will compute the maximum frequency if both registers have the same clock.

For more information on design practices and strategies about how to best use the STA report, refer to Application
Note: AN81623.

Static timing analysis identifies delays in a design’s digital logic and computes the maximum frequency for each
clock. The static timing analysis report shows the critical paths in the design that limit the clock frequency. If the
actual clock frequency exceeds the calculated maximum frequency, the report indicates a timing violation in the
design.

Static timing analysis only has access to the design during the build process, so it does not have knowledge of how
the elements of the design will be used or of any changes made dynamically (such as firmware that changes a
clock frequency). Because of these limitations, static timing analysis may issue warnings about paths that are not
actually problematic, because of the way the design is used. If you have verified that the path in question is not
used, you can safely ignore these warnings. For example, if a pin Component is configured as "Digital Input &
Digital Output," static timing analysis may issue a warning about a path going to the output and then back in on the
input of the same pin Component. If no configuration would ever result in this path being used, this warning can be
safely ignored.

Note It may not be safe to ignore these warnings. Please review the warnings in the Notice List Window and
address as necessary.

Static timing analysis does not have knowledge of how signals are generated or used outside the PSoC device. It
can display delays related to such signals, but cannot automatically find timing violations.

To Open the STA Report:

After a successful build of your design, the STA report is provided as a standalone HTML report in the Results tab
of the Workspace Explorer.

Double-click the <project_name>.html file to open the report in your system's default web browser.

Report Layout:

The STA report contains a title, project information, various sections described under "Report Sections," and
expanding/collapsing links to information in those sections.

Project Information

Every STA report contains the following project information:

◼ Project name and path

http://www.cypress.com/go/AN81623

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 361

◼ Build time for this report

◼ Device used

◼ Device revision

◼ Temperature used for analysis

◼ Voltage used for analysis

◼ Voltage of each of the four I/O domains

Expanding/Collapsing Links

The links include:

◼ Expand All – This link expands all sections in the report, making the information visible.

◼ Collapse All – This link collapses all sections in the report, making only the section header visible.

◼ Show All Paths – This link expands the applicable section tables to show a multiline view of the full timing path.

◼ Hide All Paths This link collapses the applicable section tables to show only a single line for the timing path.

Report Sections:

The following sections may be included in the report. Except for "Timing Violations," any section that is empty will
not be included.

◼ Timing Violation

◼ Clock Summary

◼ Register to Register

◼ Asynchronous Clock Crossings

◼ Input to Output

◼ Input to Clock

◼ Clock to Output

◼ Input to Output Enable

◼ Clock to Output Enable

Timing Violation Section

If there are no timing violations, this section just displays the text "No Timing Violations."

If there are violations and if the DWR Operating Range is set to Full Range, a note displays. The note indicates that
changing the operating range may reduce the number of timing warnings. After the note, there is a table of one line
entries for each combination of Violation, Source Clock, and Destination Clock.

The table is separated into three violation types: Setup, Hold, and Asynchronous, as shown in the following
example.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 362

Violation Source Clock Destination Clock Slack (ns)

Setup:

 Clock_1 Clock_2 -2.501

 Clock_1 Clock_3 -3.458

 Clock_2 Clock_3 -2.344

Hold:

 Clock_1 Clock_2 -0.127

Asynchronous:

 Pin_3 Clock_1

 Pin_3 Clock_2

Only one entry is included for each violating source / destination clock pair. The detail for each failing path is shown
in later sections. On the STA report, you can click on an entry in the table to jump to the specific details.

If a particular violation type is not present in the design, that header will not be present in the table. The one line
entry for each violating clock pair includes following fields:

◼ Source Clock: The source clock of the violating path

◼ Destination Clock: The destination clock of the violating path

◼ Slack: The slack time of the failure. For a Setup or Hold violation, this is always a negative number (indicating a
violation). For an Asynchronous clock crossing violation, this field is left blank.

Clock Summary Section

This section is a short overview that represents the clocking frequency requirements and the achievable frequency
with the current implementation of this design. The following is an example:

Clock Domain Nominal Frequency Required Frequency Maximum Frequency Violation

BUS_CLK CyBUS_CLK 48.000 MHz 48.000 MHz Unrestricted

Clock_1 CyBUS_CLK 24.000 MHz 24.000 MHz 21.845 MHz Frequency

Clock_2 CyBUS_CLK 12.000 kHz 12.000 kHz 22.387 MHz

Pin_3 Pin_3 18.000 MHz 18.000 MHz 45.239 MHz

Pin_5 Pin_5 Unknown Unknown 21.764 MHz Unknown

The one line entry for each clock in the system has the following fields:

◼ Clock: The name of this clock. The first entry is always BUS_CLK. The remaining entries are shown in
alphabetical order.

◼ Domain: This is the Clock Domain to which this clock belongs. Clocks in the same domain are synchronous to
each other.

◼ Nominal Frequency: This is the frequency that this “solved” by the tool from the desired frequency in the
design. It is the direct value of the source clock divided by the divider setting. There is no accommodation for
accuracy or jitter due to synchronization with MASTER_CLK. In the case of a clock where the frequency cannot
be determined (i.e. clock coming from a pin), the frequency is displayed as “Unknown”.

◼ Required Frequency: This is the frequency at which paths using this clock must be able to meet timing. This
clock is the Nominal clock with the addition of worst case synchronization jitter.Required Frequency (MHz): This
is the clock frequency specified in the design. If this is an Asynchronous clock that doesn’t have a clock
frequency property, it is displayed as "Unknown".

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 363

◼ Maximum Frequency: This is the frequency at which this clock can safely run. It is calculated based on the
slowest path in the design that impacts this clock. If a clock is not restricted “N/A” will appear in this column.

◼ Violation: There are two possible violations: "Frequency" or "Unknown." Frequency is shown when the Max
Frequency is less than the Required Frequency. Unknown is shown when the Required Frequency is unknown.
These violations are shown in red. If there is no violation, this field is blank.

Register to Register Section

This section is for register to register timing paths where the source and destination clocks are either the same, or
they are synchronous to each other. Any asynchronous clock crossing is described in the "Asynchronous Clock
Crossing" section. However the paths between an asynchronous clock and itself are included here.

There are two major subsections within this section: Setup and Hold.

Setup Subsection

This subsection is further divided into Source clock and then Destination clock. Each of these clocks is listed in
alphabetic order. If the negative edge of the clock is used that is considered a distinct clock and the negative edge
is denoted along with the clock name.

The Source clock heading lists the Source clock name and required frequency. For example:

Source clock: Clock_1 (Required Freq. 24.000 MHz)

The Destination clock heading lists the Destination clock name and required frequency. It also includes the
requirement for the path delay. This is dependent on the combination of the source and destination clocks. It can be
impacted by the use of opposite clock edges or different clocks that are synchronous to BUS_CLK. For example
the following destination clock is different from the source clock, but both are synchronous to BUS_CLK, which in
this example is running at 48 MHz.

Destination clock: Clock_2 (Required Freq. 12.000 MHz)

Path Delay Requirement: 20.833ns (48 MHz)

The following is an example of three timing paths with the second entry expanded to show the complete path.

Source Destination FMax
(MHz)

Delay
(ns)

Slack
(ns)

Violation

dff_reg1:macrocell.mc_q Net_5:macrocell.mc_d 8.000 12.500 -2.500 SETUP

dff_reg1:macrocell.mc_q Net_6:macrocell.mc_d 11.000 9.091 0.909

Type Location Fanout Instance/Net Source Dest Delay (ns)

macrocell U(3,1) 1 dff_reg1 .cr_clk .q 1.250

Route 3 dff_reg1 .q .main_0 3.608

macrocell U(3,2) 1 Net_5 .main_0 .mc_d 2.810

macrocell U(3,2) 1 Net_5 Setup 0.875

Clock Skew 0.548

dff_reg1:macrocell.mc_q Net_7:macrocell.mc_d 11.500 8.696 1.304

The one line entry for each path has the following fields:

◼ Source: The register start of the path

◼ Destination: The register destination of the path

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 364

◼ FMax (MHz): The maximum frequency based on this specific path in MHz (this is 1/Delay).

◼ Delay (ns): Delay along the path in ns including the setup time and any clock skew.

◼ Slack (ns): Slack is the (Path Delay Requirement - Actual Delay). Display any slack less than 0 in red.

◼ Violation: The only violation type is "SETUP". Display "SETUP" in red for negative slack and nothing in the field
otherwise.

Entries are listed from the least slack to most slack. All paths that violate setup time are included in the report. After
that, up to another 10 entries are shown for each clock pair.

Each single line entry can be expanded to show a detailed complete path. Each entry includes the following fields:

◼ Type: This is the type of function involved:

◼ Route: Used for all routes

◼ Macrocell

◼ Datapath

◼ Control: Indicates Control register

◼ Status: Indicates Status register

◼ Clock: Used for clock skew entries

◼ IO: Indicates a pin on the device

◼ Location: This is the location of the cell indicated in the type field. It is present for all types except Route and
Clock.

◼ U(x,y): Format for all cells in the UDB array (x,y are the coordinates of the UDB)

◼ Pi[j]: Format for a pin (i is the port number and j is the pin number within the port)

◼ Fanout: This indicates the fanout of the signal. This is expected to be 1 except for Routes where it should
indicate the number of destinations driven by this same signal.

◼ Instance/Net: This is the Instance or Net name associated with this piece of the route.

Note Macrocell names might not match the original Component name. The fitter may combine macrocells
with other nets and macrocells. This process can cause some name information to be lost. Macrocells that
have been combined with nets may inherit the net name, such as "Net_73".

◼ Source and Dest: These are the source and destination pins on the cells at both ends of this portion of the
route. The destination field is also used by itself (source empty) for some special cases:

◼ Setup: Special case included at the end of each setup path to indicate the setup required to the register.

◼ Skew: Special case included only for routed clocks (Global clocks do not get a skew entry).

◼ Delay: Incremental delay in ns for this portion of the overall path. The sum of all the incremental delay entries
must equal the Delay in the one line summary.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 365

Hold Subsection

This subsection is further divided into Source clock and then Destination clock. Only source / destination pairs are
present when at least one of those clocks is a routed clock. The naming and ordering of the subsections is the
same as those in the "Setup" subsection, except that clock frequency is not included for the Source and Destination
headings. For example:

Source clock: Clock_1

Destination clock: Clock_2

The following is an example of three timing paths with the second entry expanded to show the complete path.

Source Destination Slack (ns) Violation

dff_reg1:macrocell.mc_q Net_5:macrocell.mc_d -0.541 HOLD

dff_reg1:macrocell.mc_q Net_6:macrocell.mc_d 2.965

Type Location Fanout Instance/Net Source Dest Delay (ns)

macrocell U(3,1) 1 dff_reg1 .cr_clk .q 1.000

Route 3 dff_reg1 .q .main_0 3.122

macrocell U(3,2) 1 Net_5 .main_0 .mc_d 2.523

macrocell U(3,2) 1 Net_5 Hold -0.120

Clock Skew -3.560

dff_reg1:macrocell.mc_q Net_7:macrocell.mc_d 5.234

The one line entry for each path is the same format as the "Setup" subsection entries, with the following changes:

◼ FMax and Delay are not present for Holds

◼ Slack is calculated in the same way that Delay is calculated for "Setup." It is the sum of all the Delay entries
present in the detailed path.

◼ Violation type is "HOLD" for a hold violation

Entries are listed from the least slack to most slack. All paths that violate hold time are included in the subsection.
After that, up to another 10 entries are shown for each clock pair.

Each single line entry can be expanded to show a detailed complete path. Each entry is similar to those in the
"Setup" section, with the following changes:

◼ Delays are calculated based on a best case path instead of a worst case path

◼ The special case entries for Dest are:

◼ Hold: Special case included at the end of each hold path to indicate the hold required to the register. Positive
hold requirements are indicated with a negative number such that the sum of the incremental delays totals to
be the slack time.

◼ Skew: Always present since without clock skew there can’t be a hold time violation in this architecture.

◼ Delay: Incremental delay sums to the slack time. The sign of the Hold and Clock skew entries needs to be such
that these entries sum properly for that calculation.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 366

Asynchronous Clock Crossing Section

This section shows all paths between clock domains where the source and destination clocks are not synchronous
to each other.

This section is further divided into subsections for the Source clock and the Destination clock. Only source /
destination pairs are present when these clocks are asynchronous to each other and they are not both synchronous
to BUS_CLK. The naming and ordering of the subsections is the same as for the "Setup" subsection, except that
clock frequency is not included for the Source and Destination headings. For example:

Source clock: Clock_1

Destination clock: Clock_2

The following is an example of three timing paths with the second entry expanded to show the complete path.

Source Destination Delay (ns)

dff_reg1:macrocell.mc_q Net_5:macrocell.mc_d 12.500

dff_reg1:macrocell.mc_q Net_6:macrocell.mc_d 9.091

Type Location Fanout Instance/Net Source Dest Delay (ns)

macrocell U(3,1) 1 dff_reg1 .cr_clk .q 1.250

Route 3 dff_reg1 .q .main_0 3.608

macrocell U(3,2) 1 Net_5 .main_0 .mc_d 2.810

macrocell U(3,2) 1 Net_5 Setup 0.875

Clock Skew 0.548

dff_reg1:macrocell.mc_q Net_7:macrocell.mc_d 8.696

The one line entry for each path is the same format as the Setup entries with the following changes:

◼ FMax and Slack are not present for Clock Crossings

◼ Delay is calculated to provide information to the user, but it is not used to compute whether a timing
requirement is met.

◼ The Violation field is not present.

Entries are listed from the most delay to least delay. Up to 10 entries are shown for each clock pair.

Each single line entry can be expanded to show a detailed complete path. The detailed entries for the path are
identical to the entries that are present for Setup.

Input to Output Section

This section shows combinatorial paths through the device. It contains one single line entry for the longest
combinatorial path for each source / destination pair. These entries are ordered from the longest delay to the
shortest delay.

The following is an example of three timing paths with the second entry expanded to show the complete path.

Source Destination Delay (ns)

Pin_3(0):iocell._fb Pin_4(0):iocell.pad_out 56.823

Pin_3(0):iocell._fb Pin_6(0):iocell.pad_out 54.113

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 367

Type Location Fanout Instance/Net Source Dest Delay (ns)

Pin P5[6] 1 Pin_3(0) .pad_in .fb 15.258

Route 2 Net_3 .fb .main_0 5.714

macrocell U(3,2) 1 Net_4 .main_0 .q 3.350

Route 1 Net_4 .q .input 6.297

Pin P5[2] 1 Pin_6(0) .input .pad_out 23.495

Pin_5(0):iocell._fb Pin_6(0):iocell.pad_out 42.696

The one line entry for each path has the following fields:

◼ Source: The beginning of this combinatorial path

◼ Destination: The final destination of this combinatorial path

◼ Delay (ns): Delay along the path in ns.

Each single line entry can be expanded to show a detailed complete path. The detailed entries for the path are
identical to the Setup entries, except that the special case entries for clock skew and setup are never present.

Input to Clock Section

This section shows the path into the device that terminates at a clocked element.

This section is further divided into Destination clock subsections based. These subsections are ordered
alphabetically and labeled with the name of the clock. For example:

Destination clock: Clock_1

The following is an example of three timing paths with the second entry expanded to show the complete path.

Source Destination Delay (ns)

Pin_3(0):iocell._fb Net_7:macrocell.mc_d 31.763

Pin_3(0):iocell._fb Net_6:macrocell.mc_d 24.657

Type Location Fanout Instance/Net Source Dest Delay (ns)

Pin P5[6] 1 Pin_3(0) .pad_in .fb 15.258

Route 2 Net_5 .fb .main_0 5.714

macrocell U(3,2) 1 Net_6 .main_0 .mc_d 2.810

macrocell U(3,2) 1 Net_6 Setup 0.875

Pin_5(0):iocell._fb Net_6:macrocell.mc_d 22.376

The longest path from each input to the clock is shown with a single line entry. These entries are ordered from
longest to shortest. These entries are similar to the "Input to Output" section, except there is a setup entry for each
path.

Clock to Output Section

This subsection is present to show the path from a clocked element out of the device.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 368

This subsection is further divided into subsections based on the Source clock. These subsections are ordered
alphabetically and labeled with the name of the clock. For example:

Source clock: Clock_1

The following is an example of three timing paths with the second entry expanded to show the complete path.

Source Destination Delay (ns)

dff_reg1:macrocell.mc_q Pin_4(0):iocell.pad_out 43.873

dff_reg1:macrocell.mc_q Pin_6(0):iocell.pad_out 30.459

Type Location Fanout Instance/Net Source Dest Delay (ns)

macrocell U(3,1) 1 dff_reg1 .cr_clk .q 1.250

Route 2 dff_reg1 .q .input 5.714

Pin P5[2] 1 Pin_6(0) .input .pad_out 23.495

dff_reg2:macrocell.mc_q Pin_6(0):iocell.pad_out 29.745

The longest path from a clock to each output is shown with a single line entry. These entries are ordered from
longest to shortest. These entries have the same expansion capability and all the same fields as the "Input to
Output" section.

Input to Output Enable Section

This section is identical to the "Input to Output" section except in this case the destination is the output enable of an
output port instead of the data for an output port. The reporting is handled identically except each path has two
entries, one for turning the output on (TURNON) and one for turning the output off (TURNOFF). These two cases
are processed as two different entries even if the delays are the same.

The following is an example of two timing paths with the second entry expanded to show the complete path.

Source Destination Type Delay (ns)

Pin_9(0):iocell._fb Pin_6(0):iocell.pad_out TURNON 49.625

Pin_9(0):iocell._fb Pin_6(0):iocell.pad_out TURNOFF 49.625

Type Location Fanout Instance/Net Source Dest Delay
(ns)

Pin P3[5] 1 Pin_9(0) .pad_in .fb 15.258

Route 1 Net_26 .fb .main_0 5.714

macrocell U(2,1) 1 tmpOE__Pin6_net_0 .main_0 .q 3.350

Route 1 tmpOE__Pin6_net_0 .q .oe 6.331

Pin P5[2] 1 Pin_6(0) .oe .pad_out 18.972

In order to distinguish these two entries an additional field is added to the one line entry:

◼ Type: Either TURNON or TURNOFF depending on whether the output is enabled or disabled.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 369

Clock to Output Enable Section

This section is identical to the "Clock to Output" section except in this case the destination is the output enable of
an output port instead of the data for an output port. The reporting is handled identically except each path has two
entries, one for turning the output on (TURNON) and one for turning the output off (TURNOFF). These two cases
are processed as two different entries even if the delays are the same.

The following is an example of two timing paths with the second entry expanded to show the complete path.

Source Destination Type Delay (ns)

dff_reg3:macrocell.mc_q Pin_6(0):iocell.pad_out TURNON 22.869

dff_reg3:macrocell.mc_q Pin_6(0):iocell.pad_out TURNOFF 22.869

Type Location Fanout Instance/Net Source Dest Delay (ns)

macrocell U(1,1) 1 dff_reg3 .cr_clk .q 1.250

Route 1 dff_reg3 .q .oe 5.714

Pin P5[2] 1 Pin_6(0) .oe .pad_out 15.905

In order to distinguish these two entries an additional field is added to the one line entry:

◼ Type: Either TURNON or TURNOFF depending on whether the output is enabled or disabled.

See Also:

◼ Generated Files

◼ Workspace Explorer

CyPrjMgr Command Line Tool

cyprjmgr.exe is a command line tool that exposes common project management functionality to be used through
the command line. The tool can be invoked from the command line and used to perform various functions on a
workspace/project. It also provides the flexibility to set the build configuration from the command line.

Syntax:
cyprjmgr

[-h]

[-ver]

[-wrk <workspace_name>]

[-clean]

[-build]

[-rebuild]

[-archive <archive_level> <archive_as_zip>]

[-t <toolchain>]

[-c <config>]

[-p <TopProject>]

[-n <TopDesign>]

[-d <selectedDev>]

[-m <paramsFile>]

[-import <Source_Project> <Source_Component>]

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 370

[-rename <Component_name> <new_name>]

[-delete <Component_name>]

[-exclude <Component_name>]

[-l <NewPrjName>]

[-s]

[-v <visibility>]

[-prj <Target_Project>]

[-cmp <Target_Component>]

[-addprj <prj_path>]

[-cp <path>]

[-con <Target_Project>]

[-batch <file_name>]

[-updateComp <source_project> <source_Component>]

[-updatePrj <source_project>]

[-updateInst]

[-updateDWInst]

[-forceWrite]

[-noCustBuild]

[-noRefresh]

[-ol <compiler optimization level>]

[-warn <High|Low|None>]

[-buildPreCompCust <Project>]

[-updateInstIfNeeded]

[-ignoreDepsWarning]

[-allowIllegalUpdates]

[-generateDescFiles]

[-verifyDescFileEnabled]

[-verifyDescFileContents]

[-export <IDE>]

[-pdlPath <path>]

Tool-Wide Options:

The following options are tool wide:

-h Displays this help message

-ver Displays the version and build number of cyprjmgr

Chosen Workspace Options:

The following options apply to the chosen workspace:

-wrk, -w Specifies the workspace to be used

-prj Specifies the target project on which all the command line options will be

targeted.

 In case target project is not specified, Top Project of the workspace

becomes the

 target project

-p Sets the Top Project in the workspace

-cmp, -o Specifies the target Component on which all the library options will be

targeted.

 In case target Component is not specified, the Top Block of the Target

Project becomes

 the Target Component

-addprj Adds an existing project <prj_path> to the workspace

-l Adds a new empty library project with name <NewPrjName> to the workspace

-d Sets the selected device of projects to be built

-cp Copies the entire workspace to the location specified by <path>, all command

line

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 371

 options will act on the copy created

Entire Workspace Options

The following four options target the entire workspace unless the target project is set with -prj:

-clean Cleans the workspace/project

-build Builds the workspace/project

-rebuild Rebuilds the workspace/project

-archive Archives the workspace/project with different archiver levels

(complete/typical),

 and as zip or nozip

Target Project Options:

The following options apply to the target project:

-t Sets the tool chain the action should use (Keil, ARM etc.)

-c Sets configuration the action should use (Debug, Release)

-ol Sets compiler optimization level

-warn Sets compiler warning level

-n Sets the Top Design of the Top Project

-m Parameters file that will override the default parameter values of the

schematic in

 the TopDesign of the Top Project

-import Imports the Source Component from the Source Project into the target project

of the workspace

-export Exports the project to the target IDE. Valid targets are EWA, Eclipse and

uVision

-rename Renames Component_name in target project of the workspace to new_name

-delete Deletes Component from the disk

-exclude Excludes Component from the target project of the workspace

-s Lists the external dependencies of the target project

-v Sets the visibility of the target Component to true/false

-con Checks the consistency of the target project of the workspace

-batch Reads a file containing a series of commands, one on each line. Executes the

commands

 one by one. When batch option is used, all other optional switches are

ignored

-updateComp Updates a Component in the Target Project from the source

project

-updatePrj Updates the Target Project from the Source Project

-updateInst Updates the instances on the schematic with the latest

Components

-forceWrite Makes read-only files writable and then makes the change

-noCustBuild Delay building of customizer DLLs until the end (e.g., during

imports)

-noRefresh Disable updates from the refresh manager (Use with extreme

care)

-buildPreCompCust Build customizer for a project

-updateDWInst Updates the design-wide instances with the latest Components

-updateInstIfNeeded Update instances to minimum valid version

-ignoreDepsWarning Suppress SystemDepNotFoundOnDisk warning while building

primitives

-allowIllegalUpdates Allows updating instances to latest version, even if illegal

-generateDescFiles For all specified projects that have 'Generate description

files' enabled,

 generates the description files.

-verifyDescFileEnabled Verifies that all specified projects have 'Generate

description files' enabled.

-verifyDescFileContents Verifies that all specified projects (that have 'Generate

description files'

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 372

 enabled) have generated files that are in-sync with the

current version of their

 source files.

-pdlPath Sets the path to the PDL file for the project

Usage Scenarios and Examples

 –clean / -build / -rebuild
cyprjmgr.exe –w workspace –clean

cyprjmgr.exe –w workspace –build

cyprjmgr.exe –w workspace –rebuild

This option will clean/build/rebuild the workspace respectively. Only one out of clean, build, or rebuild can be used
in one run of the tool.

-h
cyprjmgr.exe –h

This will display help message for the tool

–t
cyprjmgr.exe –w workspace –build –t “ARM CM3-GCC 4.9-2015-q1-update”

This will build the workspace with the toolchain specified. If no toolchain is specified by the user, the workspace will
build with the toolchain, with which it was built the last time.

–c
cyprjmgr.exe –w workspace –build –c Release

This will build the workspace with the build config specified (Release, in this example)

–p
cyprjmgr.exe –w workspace -build –p Design01

This will set the project Design01 in the workspace as the Top Project and build the workspace

–n
cyprjmgr.exe –w workspace –build –n Component01

This will set the Component Component01 in the Top Project of the as the Top Component and build the workspace

–d
cyprjmgr.exe –w workspace –build –d CY8C3866AXI-040

This option will set the device for all Projects in the workspace and build it.

cyprjmgr.exe –w workspace –build –d CY8C3866AXI-040 –prj Design01

This option will set the device for the target project and build it.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 373

cyprjmgr.exe –w workspace –build –d CY8C3866AXI-040 –t “DP8051-Keil Generic” –prj

Design01

This switch sets the device and toolchain for the target project ‘Design01.cyprj’ and builds it

-rev
cyprjmgr.exe –w workspace –rev ES1

This switch sets the revision of the selected device for all the Projects in the workspace.

cyprjmgr.exe –w workspace –build –d CY8C3866AXI-040 –rev ES1 –prj Design01

This option sets the device revision to ‘ES1’ for the target project ‘Design01.cyprj’ and builds it.

–m
cyprjmgr.exe –w workspace –build –m params_file

This option will read in parameters and their values from a text file, and override those values in the schematic.

Format of the params file :

The params file accepts parameters and their values as name=value pairs. The name of the instance must be
given as inst_name=value.

For example,

inst_name=and_1

NumTerminals=8

TerminalWidth=4

inst_name=Counter_1

Resolution=16

This will change the values of parameters NumTerminals and TerminalWidth in the instance and_1, and
Resolution in the instance Counter_1.

–prj
cyprjmgr.exe –w workspace –prj Project01

This option sets Project01 in the Workspace as the Target Project. All library options on the same command line will
act on Project01. If no Target Project is selected, the Top Project of the Workspace becomes the Target Project.

cyprjmgr.exe –w workspace –build –prj Project01

This option overrides build to work only with Project01 (only if Project01 is in workspace) and its dependencies
instead of building the entire workspace. This is equivalent to selectively building a project in the GUI.

–o, -cmp
cyprjmgr.exe –w workspace –o Component01

cyprjmgr.exe –w workspace -cmp Component01

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 374

This option sets Component01 as the Target Component in the Target Project. All library options on the same
command line targeting a Component will act on the Target Component. If no Target Component is selected, the
Top Component of the Target Project becomes the Target Component.

–import
cyprjmgr.exe –w workspace –import SourceProject SourceComponent

This option will import the Source Component from the Source Project to the Top Project of the workspace.

cyprjmgr.exe –w workspace –import SourceProject SourceComponent –prj TargetProject

This option will import the Source Component from the Source Project into the Target Project of the Workspace.

–rename
cyprjmgr.exe –w workspace –rename ComponentName NewComponentName

This option will rename the Top Component in the Top Project from ComponentName to NewComponentName.

cyprjmgr.exe –w workspace –rename ComponentName NewComponentName –prj Project01

This option will rename the Top Component in Project01 of the Workspace

cyprjmgr.exe –w workspace –rename ComponentName NewComponentName –prj –Project01 –o

Component02

This option will rename Component02 in Project01 of the Workspace

–delete
cyprjmgr.exe –w workspace –delete Component01

This option removes Component01 of the Top Project of the Workspace from the disk.

cyprjmgr.exe –w workspace –delete Component01 –prj Project01

This option removes Component01 of Project01 of the Workspace from the disk.

–exclude
cyprjmgr.exe –w workspace –exclude Component01

This switch removes the ‘Component01’ instance from the ‘Top Project’ of the Workspace.

cyprjmgr.exe –w workspace –exclude Component01 –prj Project01

This switch removes the ‘Component01’ instance from ‘Project01’ of the Workspace.

–l
cyprjmgr.exe –w workspace –l LibraryName

This option adds a new empty library project to the Workspace.

–s
cyprjmgr.exe –w workspace –s

This option lists the external dependencies of the Top Project in the Workspace.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 375

cyprjmgr.exe –w workspace –s –prj Project01

This option lists the external dependencies of Project 01 in the Workspace.

–v
cyprjmgr.exe –w workspace –v false –o Component01

This option will set the visibility of symbol Component01 in the Top Project of the Workspace to false.

cyprjmgr.exe –w workspace –v false –o Component01 -prj Project01

This option will set the visibility of the symbol Component01 in Project01 of the Workspace.

–addprj
cyprjmgr.exe –w workspace –addprj Project01

This option adds an existing CyDesigner project, Project01 to the Workspace.

–con
cyprjmgr.exe –w workspace –con

This option checks the consistency of the Top Project of the Workspace. i.e.

5. There is no file in the Target Project folder that the project does not know about.

6. All files that the project knows about, are at the location pointed by their Canonical Name property.

cyprjmgr.exe –w workspace –con –prj Project01

This option checks the consistency of Project01 in the Workspace.

–cp
cyprjmgr.exe –w workspace –cp NewLocation

This option will copy the entire workspace folder to NewLocation. All other options given on the same command line
will now act on the NewLocation Workspace.

-ver
cyprjmgr.exe -ver

This option displays the version number of the application.

-batch
cyprjmgr.exe –w workspace –batch file_name

This option reads a text file that has a series of CyPrjMgr commands, one per line. The CyPrjMgr tool reads each
line, executes the command, and if successful goes to the next command. If a command fails, the tool exits with
failure message.

When –batch is used, all other optional switches on the command line are ignored.

-updateComp
cyprjmgr.exe –w workspace -updateComp source_project source_Component

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 376

This option updates the Component in the Top Project of the workspace.

cyprjmgr.exe –w workspace –prj Project01 - updateComp source_project source_Component

This option updates the Component in the Project01 of the workspace.

The update of Component is based on the following rules:

◼ The tool looks for a Component in the target project with the same base name as the source Component. If it
does not find, the Component is imported to the target project.

◼ If it finds the target Component, it compares the files in the source Component to the corresponding file in the
target Component in the following way :

□ If there is any file in the source Component that does not exist in the target, UPDATECOMP.

□ If a file with the same name as in source exists in the target Component, the contents of the two files
are compared. If their contents are different, UPDATECOMP.

◼ If all files are same, there is nothing to be done.

UPDATECOMP : Remove the target Component from the target project. Import the source Component into the
target project.

-updatePrj
cyprjmgr.exe –w workspace –updatePrj source_project

This option will update the Top Project of the workspace.

cyprjmgr.exe –w workspace –prj Project01 –updatePrj source_project

This option will update the project Project01 of the workspace.

The update of the project is based on the following rules:

◼ The toolchains of the source project and target project are compared. If they are different, UPDATEPRJ.

◼ From the confirmed identical toolchains, compare the source project toolchain settings with its counterpart in
the target project. If they are different, UPDATEPRJ.

◼ Compare the non-Component files of the source project with the target project (i.e., main.c, .cydwr file, .cyprj
file). If any of these is different form its counterpart. UPDATEPRJ.

◼ If this step is reached, there is nothing to update.

UPDATEPRJ : The target project is removed from the workspace and its directory is deleted. The source project
and all its files/folders/Components are copied in place of the target project and the project is added to the
workspace.

-archive
cyprjmgr.exe –w workspace –archive complete zip

This archives the complete workspace into zip file.

cyprjmgr.exe –w workspace –archive typical nozip –prj Design01

This archives only project Design01 with typical archive level. The archived project will be exact replica of the
source project (in the example shown above, Design01 is the source project).

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 377

The archive of the workspace/project is based on the following rules:

◼ It archives the whole workspace if no target project provided, else it archives only the sprcified project.

◼ Two different level of archive available, complete and typical. Using ‘complete’ archive level the whole
project/workspace is archived whereas with ‘typical’ archive level only.

◼ There is an option available to archive as ‘zip’ or ‘nozip’, which allows the user to archive into zip or just the
copy of the content.

-updateInst
cyprjmgr.exe –w workspace –updateInst

This switch updates all the instances of the Components on the schematic including the boot Component for the
project, for all the projects in the specified workspace with the latest versions of the Components available.

cyprjmgr.exe –w workspace –updateInst –prj Design01

This switch updates all the instances of the Components on the schematic including the boot Component for the
target project “Design01” with the latest versions of the Components available.

Update instance of the workspace/project is based on the following rules

◼ It updates all instances on the schematic with the latest Component instances.

◼ If a target project is provided, it updates the instances of the Components in the specified project only. If the
project is not specified,,it updates all the projects in the workspace with instances of the latest versions of all
the Components.

-forceWrite
cyprjmgr.exe –w workspace –d CY8C3866AXI-040 –forceWrite

This switch sets the device for all the Projects in the specified workspace, even if the workspace and projects are
read-only.

Force writing of the workspace/project is based on the following rules:

◼ The workspace and project files are made writable if they are read-only

◼ Any other switch passed to the ‘cyprjmgr’ tool, which changes files, need to use this option to save the changes
to read-only files.

◼ If this option is not provided changes will not be saved on read-only files.

-noCustBuild
cyprjmgr.exe –w workspace -build –noCustBuild

This switch delays the building of the customizer DLLs until the end.

-noRefresh
cyprjmgr.exe –w workspace -build –noRefresh

This switch disables the refresh manager while building the project.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 378

-buildPreCompCust
cyprjmgr.exe –w workspace -build –buildPreCompCust project

This switch builds customizer for a specific project the building of the customizer DLLs until the end.

–updateDWInst
cyprjmgr.exe –w workspace -build –updateDWInst

This switch updates the instances on the schematic to the latest version

-ol
cyprjmgr.exe –w workspace -build –ol level

This switch sets the compiler optimization level. The level is compiler specific.

-warn
cyprjmgr.exe –w workspace -build –warn[High|Low|None]

This switch sets the compiler warning level.

-updateInstIfNeeded

cyprjmgr.exe –w workspace -build –updateInstIfNeeded

This switch updates Components to the minimum valid level.

-ignoreDepsWarning
cyprjmgr.exe –w workspace -build –ignoreDepsWarning

This switch suppresses SystemDepNotFoundOnDisk warning while building primitives.

-allowIllegalUpdates
cyprjmgr.exe -w <workspace> -updateInst -allowIllegalUpdates

Updates the Component to the latest version, even if the version is not allowed from cystate files.

-export
cyprjmgr.exe –w workspace -prj Proj1 -export uVision

This switch exports the project to uVision. The -export switch can take one of the following values: eclipse, EWA
(refers to IAR), or uVision.

-generateDescFiles
cyprjmgr.exe -w workspace -generateDescFiles

For all the projects in the workspace that have 'Generate description files' enabled, generates the description files.

cyprjmgr.exe -w workspace -prj <project_name> -generateDescFiles

For the specified project in the workspace, if 'Generate description files' is enabled, generates the description files.

-verifyDescFileEnabled
cyprjmgr.exe -w workspace -verifyDescFileEnabled

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 379

Verifies that all the projects in the workspace have 'Generate description files' enabled.

cyprjmgr.exe -w workspace -prj <project_name> -verifyDescFileEnabled

For the specified project in the workspace, verifies that 'Generate description files' is enabled.

-verifyDescFileContents
cyprjmgr.exe -w workspace -verifyDescFileContents

Verifies that all the projects in the workspace (that have 'Generate description files' enabled) have generated files
that are in-sync with the current version of their source files.

cyprjmgr.exe -w workspace -prj <project_name> -verifyDescFileContents

For the specified project in the workspace (if 'Generate description files' is enabled), verifies that it has generated
files that are in-sync with the current version of their source files.

-pdlPath
cyprjmgr.exe -w <workspace> -build -pdlPath <path>

Sets the PDL path used by the top project to the specified path and then builds the project.

CyHexTool Command Line Tool

The hex file postprocessor (CyHexTool) is a standalone command line tool that combines data from several hex
files to produce the programming file. The output file is in Intel hex format.

This tool is applicable to projects targeting PSoC 3 projects and older PSoC 5LP projects. For PSoC 4 projects and
newer PSoC 5LP projects, use the CyElfTool tool instead.

Syntax:
cyhextool -o <out.hex> -f <in.hex> -id <XXXXXXXX>

 [-ecc <ON|OFF|HexFile>] [-cunv <XXXXXXXX>] [-wonv <XXXXXXXX>] [-ee <eeprom.hex>]

 [-prot <protect.hex>] [-a <PROGRAM={0},...>]

Normal Options:

The following table lists and describes the various arguments for normal projects:

Argument Description

-o <out.hex> Specify output file name (required).

-f <in.hex> Specify input file name (required). This file is normally produced by the linker.

-id XXXXXXXX Specifies the target device ID (4 bytes).

-ecc

<ON|OFF|HexFile>
Enable ECC (ON), disable ECC (OFF), or specify a user-defined Intel hex file to program the ECC
bits. If this option is omitted, ECC will be disabled.

-cunv <XXXXXXXX> Specify hexadecimal customer NV latch data (4 bytes for PSoC 3/PSoC 5LP only). The default is
all zeros.

-wonv <XXXXXXXX> Specify hexadecimal write-only NV latch data (4 bytes for PSoC 3/PSoC 5LP only). The default is
all zeros.

-ee <eeprom.hex> Specify user-defined Intel hex file to program EEPROM (if needed).

-prot <protect.hex> Specify user-defined Intel hex file to program Flash protection bits (64 bytes for PSoC 3/PSoC
5LP only). The default is all zeros.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 380

Argument Description

-a

<PROGRAM={0},...>
Set section sizes (such as Flash/ECC size).

-meta XXXX> Specifies the metadata (debugging enabled, silicon rev). The meta value is always exactly two
bytes.

-rev <XX> Specifies the target device revision (1 byte).

-endian <b, l> Specifies the endianess of the device.

Bootloader/Bootloadable Options:

The following table lists and describes the various additional arguments for bootloader projects:

Argument Description

-bl <Hex File> Specifies the bootloader flash image hex file

-acd <Hex File> Specifies the *.cyacd bootloadable output file

-acdStart <XXXX> Specifies the starting address of the bootloadable image

-e <XXXX> Specifies the entry address of the bootloadable

-blcks <path to file> Specifies the file containing the address of the bootloader checksum

-blsize <path to file> Specifies the file containing the address of the bootloader size

-blChkType <X> Specifies the bootloader packet checksum type (1=basic summation, 2=CRC)

-blVer <XXXXXXXXXX> Specifies the bootloader metadata (BtldrVer, LoadableId, LoadableVersion, Cust ID)

-metaRow <0, 1> Specifies the bootloader metadata row (0 or 1), 0 if not using MultiAppBtldr

-flsLine <XXX> Specifies the number of bytes in a row of flash.

-arraySize <XXXXX> Specifies the flash array size.

Input:

The input hex files (program, protect, config) should be in Intel hex format. All input files should begin at address 0.
The cyhextool program will automatically add an offset to the addresses to match the address map specified in the
following table or the address map specified on the command line.

Name Default Address (hex) Default Size (hex)

CUNVLAT 000080 4

WONVLAT 0000F8 4

EEPROM 008000 None

CONFIG 080000 None

PROTECT 0C0000 None

PROGRAM 100000 None

CHECKSUM 200000 N/A

The -a option controls the address map. The argument of the -a option consists of a comma separated list of
NAME=VALUE pairs. Each name corresponds to a section of the output file. The value is the address of the
beginning of the section in hexadecimal. Optionally, VALUE may be ADDRESS:SIZE where ADDRESS is the
hexadecimal address and SIZE is the hexadecimal size of the section. If the size is specified, cyhextool will
produce an error message if the input data for that section exceeds the section size.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 381

Output Format:

The output format is expected to be compatible with the format specified under Input. The first line of the output file
contains a header for the programmer. The PROGRAM, PROTECT, CONFIG (ECC), and EEPROM data will be
aligned to 64-byte boundaries with zero-padding so that each line file will correspond to a Flash row. The checksum
is calculated using the following steps:

1. Find the mod-65536 (16-bit) sum of all of the data bytes in the PROGRAM section.

2. Find the mod-256 sum the MSB and LSB of the result from step 1 and the constant 2.

3. The checksum is the two’s complement of the result from step 2. The checksum will be between 0x00 and
0x100, so it is represented with two bytes.

Toolchain Support:

The makefile runs the cyhextool program after the linker finishes. If the linker does not produce an Intel hex file
directly, the makefile generator will add commands to convert the output file to Intel hex format.

Keil

Keil uses the OMF or OMF2 file format. Keil’s OH51 or OHX51 tool may be used to convert OMF/OM2 files to Intel
hex format:

OH51 program.omf

CyElfTool Command Line Tool

The CyElfTool is applicable to projects targeting PSoC 4 and PSoC 5LP devices, using cy_boot v3.5 or later. For
PSoC 3 projects and older PSoC 5LP projects, use the CyHexTool instead. For PSoC 6 projects, use the
cymcuelftool provided with the PDL instead.

The CyElfTool tool is used to patch *.elf files. This is critical as many/most 3rd party tools use the *.elf file for
programming devices and thus it needs to have all important information contained in it.

Command Line Arguments:

The following arguments are all mutually exclusive and can only be used one at a time:

Argument Description

-h Display help information

-V Display version information

-C <file.elf> Insert standard flash checksum information at 0x90300000

-S <file.elf> Report the size of the application.

-P <file.elf>

 --flash_row_size <bytes>

 --flash_size <bytes>

 --size_var_name <name>

 --checksum_var_name <name>

 [--ignore offset <bytes>]

Same as -C option, plus insert bootloader size, bootloader, checksum. Optional

--ignore_offset option controls whether to ignore the first <byte> bytes of flash in
bootloader checksum.

-E <file.elf>

 --flash_row_size <bytes>

 --flash_size <bytes>

Creates a *.c file with the bootloader's Flash, Flash Protection, Customer NVL,
Write Once NVL, EEPROM, Chip Protect, Meta, and Bootloader Meta. It also
outputs the NVL section on the console out.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 382

Argument Description

-B <file.elf>

 --flash_row_size <bytes>

 --flash_size <bytes>

 --flash_array_size <bytes>

 [-ee_array <arrayNum>]

Same as -C option, plus patch bootloadable meta-data with Application

Checksum, Application Entry Address, Last Bootloader Row, Application Length,
and Bootloader build version. Also generates the bootloadable's *.cyacd file.

-M <inputFile1.elf>

 <inputFile2.elf>

 <outputFile.elf>

 --flash_row_size <bytes>

 --flash_size <bytes>

Same as -C option, plus merge inputFile1 & inputFile2 into a single file, output

as outputFile. Excluding the flash data and bootloadable metadata, inputFile1 &
inputFile2 must have the same sections with matching content.

The cyelftool inserts or updates the following sections of the post-link .elf file:

◼ .cychecksum - All devices, contains the checksum of the flash portion of the application

◼ .cyloadermeta - All devices. The tool will update the section with the bootloader checksum and size information
for a bootloader project.

◼ .cymeta - All devices. The checksum field will already have the silicon ID so that the cyelftool only needs to
read the value, update it with the checksum, and write it back to the .elf file

◼ .cyloadablemeta (.cyloadable1meta/.cyloadable2meta) - All devices. The linker flow will populate all but the
Application Checksum, Application Entry Address, and Application Length in these sections. The tool will need
to compute these missing items and insert them into the post-link .elf file.

Keil Compiler

PSoC Creator includes the Keil compiler. It is a fully functional C compiler that is limited to level 5 optimization. If
you need better optimization, you can upgrade by contacting Keil.

This Keil compiler will work as is for 30 days, at which time it becomes "Code Size Limited." This means it cannot
link a program larger than 2k. To resolve the code size limited issue, you must register the compiler. Registration is
free. It only requires that you complete an online form.

To Register the Compiler:

1. Click on the PSoC Creator Help menu and select Register > Keil...

This brings up a GUI that displays information on your various Keil installations.

2. In this GUI, click Get license online button.

This will bring you to a web page to register your compiler. This web page consists of a set of fields in which
you are expected to enter pertinent data on your Keil installation. All fields with bolded titles are required.

□ The first field is automatically filled in by PSoC Creator.

□ The second field should also be automatically competed. It should contain the code: IKA1P-M6Q0E-
8W7ST.

3. Enter all other required values as necessary then press the Submit button.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 383

4. You will be sent a value via email to enter in the Keil Registration dialog. Bring the dialog back up and paste the
new LIC value into the New License ID Code (LIC) field and click the Add license button.

5. Your license will be added and you will have a fully registered version of the Keil compiler.

If you have any problems with the above registration process, try using the Keil µVision application. Open the
registration dialog by selecting License Management under the File menu.

See Also:

◼ Reentrant Code in PSoC 3

◼ Keil documentation

Reentrant Code in PSoC 3

Due to the limited amount of stack and RAM space available, and for performance reasons, functions compiled with
the Keil compiler are not reentrant by default. This means that the same function cannot be called multiple times
concurrently in most cases, depending on the number and types of arguments and the usage of local variables.
Concurrent function calls typically occur when the same function is called from two different interrupts, or from one
interrupt along with being called from the main program execution. While not reentrant by default, functions can be
made to support reentrancy.

To Make Generated API Functions Reentrant:

PSoC Creator generates functions for the Components in your system. PSoC Creator allows you to specify which
functions should be made reentrant on a case-by-case basis via a "reentrancy file" (*.cyre). This file specifies
exactly which functions should be made reentrant. Each line of the file must be a single function name. During the
build process, any candidate functions contained in the reentrancy file will automatically be marked to support
reentrancy.

Most functions in the API files are candidates for reentrancy. Comments in the Component API source files will
indicate which functions are not candidates.

To Add a *.cyre file to a project:

1. Right-click on a project in the Workspace Explorer, and select Add > New Item.

2. On the New Item dialog, select the "Keil Reentrancy File" and click OK.

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 384

The *.cyre file opens in the code editor. The file is named based on the project and cannot be renamed without
renaming the project (similar to the DWR file).

To enter reentrant functions:

1. Type a single function name per line, for example:

ADC_Start

PWM_Start

2. Save the *.cyre file when complete.

To Make User Application Code Reentrant:

To support reentrancy in your own application code, specify the “CYREENTRANT” #define from cytypes.h as part
of the function prototype and also in the function definition. For the Keil tool chain, this will evaluate to the
“reentrant” keyword, while for all other tool chains it will evaluate to nothing. This allows the code to function
properly across multiple tool chains and multiple device architectures.

Original function:

void Foo(void);

Modified function:

void Foo(void) CYREENTRANT;

To Make Custom Component APIs Support Reentrancy:

When creating a custom Component that might need to support reentrancy, the function can be declared using the
“ReentrantKeil” build expression. Both the function declaration in the .h file and the definition in the .c file must
include this expression. This will allow it to behave the same as other Components shipped with PSoC Creator. By
default, it will be a standard function; however, if you choose to add that function name to the reentrancy file, it will
get marked as reentrant.

Original function:

void `$INSTANCE_NAME`_Foo(void);

Modified function:

void `$INSTANCE_NAME`_Foo(void) `=ReentrantKeil($INSTANCE_NAME . "_Foo")`;

Building a PSoC Creator Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 385

To Determine What to Make Reentrant:

The Keil compiler can help determine which functions should be marked reentrant during the build process. When
the optimization level is set to 2 or higher and a build is performed, Keil will output a warning for any functions that
are called simultaneously that are not marked as reentrant.

You only want to mark a function as reentrant when the Keil compiler allocates RAM space for the function in
addition to being called concurrently. This is based on the number and type of arguments to the function, the usage
of local variables, and the complexity of the calculations in the function. The Keil compiler warning messages
should be used to determine what functions need to be marked as reentrant. The following is example output from
the Keil linker:

Warning: L15 MULTIPLE CALL TO FUNCTION NAME: _MYFUNC/MAIN CALLER1: ?C_C51STARTUP

CALLER2: ISR_1_INTERRUPT/ISR_1

In this case, the function MyFunc, which is in the file main.c, is being called from two different concurrent execution

flows. The first caller, denoted ?C_C51STARTUP, is the main flow of execution that originates from the main()

function. The second caller is the ISR_1 interrupt that is in the isr_1.c file.

See Also:

◼ Keil Compiler

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 386

6 Integrating into 3rd Party IDEs

PSoC Creator provides different methods for integrating a PSoC Creator design and various firmware files in a 3rd
party IDE. These methods vary depending on the selected device in your PSoC Creator design. There are also
differences in the process depending on the 3rd party IDE you wish to use. The following table summarizes the
methods and options for 3rd party IDE integration.

Cypress Device 3rd Party IDE Available Integration Method to Use

PSoC 6

CMSIS Pack (Eclipse and ARM MDK)

IAR

Makefile

Generating PSoC 6 Files for 3rd Party IDEs

PSoC 4 and

PSoC 5LP

Eclipse

IAR

µVision

CMSIS Pack

Makefile

Select the desired IDE on the IDE Export Wizard.

PSoC 3 µVision Only Exporting a PSoC 3 Design to Keil µVision IDE.

FM0+ Makefile Only Exporting a Design to Makefile.

Once you've generated files to use with the desired 3rd Party IDE, refer to the following table for the appropriate
path to use for the selected Cypress device and target 3rd party IDE:

Cypress Device
Selected 3rd Party

IDE
Integration Path to Follow

PSoC 6

Eclipse Using PSoC 6 Designs in Eclipse

IAR Setting up a PSoC 6 IAR Project

ARM MDK (µVision) Creating µVision Projects for PSoC 6

Makefile Building PSoC 6 Designs with Make

PSoC 4 and PSoC 5LP

Eclipse Import into Eclipse

IAR Setting up a PSoC 4/PSoC 5LP IAR Project

µVision Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE

CMSIS Pack Opening Generated CMSIS-Pack Projects (µVision 5 IDE)

Makefile Opening PSoC Creator Designs in Makefile

PSoC 3 µVision Only Opening Projects in µVision IDE

FM0+ Makefile Only Opening FM0+ Designs in Makefile

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 387

PSoC 6 Designs

For all PSoC 6 Designs, use the Build Settings > Target IDEs page to select one or more IDEs for which PSoC
Creator will generate files. This section contains the following topics for generating the files and working with the
various 3rd Party IDEs:

◼ Generating PSoC 6 Files for 3rd Party IDEs

◼ Using PSoC 6 Designs in Eclipse

◼ Setting up a PSoC 6 IAR Project

◼ Creating µVision Projects for PSoC 6

◼ Building PSoC 6 Designs with Make

Generating PSoC 6 Files for 3rd Party IDEs

The process to generate PSoC 6 design files for use in 3rd party IDEs is similar for all the IDEs available, as
follows:

1. Develop your PSoC 6-based PSoC Creator design in the usual manner as for any other device. That is, add
Components to the schematic, write firmware, program and debug as you normally would.

Note If you want to program the device using JTAG in your desired 3rd party IDE, you must set the Select
Debug option to JTAG in PSoC Creator System Editor.

2. As part of that process, open the Build Settings dialog. Right-click on a project, and select Build Settings…

3. Select the "Peripheral Driver Library" page.

□ Verify that PDL 3.0.1 is installed.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 388

□ If needed, select Custom and navigate to the location of an alternate PDL installation.

□ Under Software package imports, select software packages (Middleware, RTOSes, etc.) to include in
your build.

For more information about this page, refer to the Build Settings > Peripheral Driver Library

4. Select the "Target IDEs" page.

Select one or more IDEs for which to generate files from the pull-down menus. Options include CMSIS Pack
(Eclipse and ARM MDK), IAR, and Makefile.

□ For all IDEs, the options include Generate or Disable.

□ For IAR, there is also Generate without copying PDL files. This option will generate a project
connection file (.ipcf file) that does not include PDL files from the PSoC Creator design. You may use a
separate .ipcf file to include compatible PDL files in the IAR project.

For more information about these options and what types of files are generated, see the Build Settings > Target
IDEs page.

Note The Target IDEs page displays as part of Creating a New Project for PSoC 6 devices only.

5. Click OK to close the Build Settings dialog. Then build your PSoC 6-based PSoC Creator design in the usual
manner.

Refer to the following sections for instructions about integrating the generated files into the desired 3rd party IDE.

◼ Using PSoC 6 Designs in Eclipse

◼ Setting up a PSoC 6 IAR Project

◼ Creating µVision Projects for PSoC 6 (CMSIS-Pack)

◼ Opening PSoC 6 Designs in Makefile

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 389

Using PSoC 6 Designs in Eclipse

This section covers the process for using generated PSoC 6-based PSoC Creator design files in the Eclipse
environment. If not already done, refer to Generating PSoC 6 Files for 3rd Party IDEs for the process to generate
the necessary files.

This process involves several subsections, follows:

◼ Eclipse Configuration

◼ Creating a New Design Project

◼ Initial Project Setup

◼ Multi-Project Build

◼ PSoC 6 Debug Flow Using Eclipse/J-Link

Eclipse Configuration

You will need to perform the following Eclipse installation and configuration steps. These steps only need to be
performed once per Eclipse installation on your machine. From a high level, the steps are:

1. Install Eclipse CDT from Eclipse.

2. Install Arm CMSIS Pack from GitHub.

3. Set the CMSIS Pack root folder.

4. Install PSoC Creator CMSIS Pack from Cypress.

Eclipse CDT

Install Eclipse Luna or later with the CDT (C/C++ Development Tools) features. From www.eclipse.org, the
download ZIP archive will be named something like the following:

◼ eclipse-cpp-luna-SR2-win32.zip

◼ eclipse-cpp-mars-SR2-win32.zip

◼ eclipse-cpp-neon-1-win32.zip

ARM CMSIS Pack Management Plug-ins

Install the ARM CMSIS-Pack Management plug-ins. Use version 2.3.2; versions higher than version 2.3.2 will not
work. The plug-ins can be downloaded as a ZIP archive from:

https://github.com/arm-software/cmsis-pack-eclipse/releases

Install the plug-ins for Eclipse as follows:

1. In Eclipse, go to the Help menu and select Install New Software…

http://www.eclipse.org/
https://github.com/arm-software/cmsis-pack-eclipse/releases

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 390

2. On the Install dialog, click Add... Then on the Add Repository dialog, enter the path to your downloaded ZIP file
as the Location value and click OK.

3. The Install dialog will populate as shown. Select the CMSIS Pack Eclipse plug-in-ins check box and click
Next >.

Note If you see a message "There are no categorized items" instead of the expected feature name in the
following image, unselect the Group items by category check box.

4. On the next page, accept the license agreement and click Finish. The plug-ins will be installed and you must
restart Eclipse to complete the installation.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 391

Eclipse CMSIS-Pack Folder

The CMSIS-Pack Management plug-ins require that a CMSIS-Pack root installation folder be set. Go to the Eclipse
Window menu, select Preferences, and enter the path to the CMSIS-Pack root installation folder you wish to use.

For users who have Keil µVision 5 or later installed, the path will be the one shown below.

PSoC Creator CMSIS Pack

As a convenience to our PSoC Creator/Eclipse users, Cypress provides a small "toolchain adapter" feature, which
populates several Eclipse project tool settings for projects imported from PSoC Creator, saving time and reducing
the chances of incorrectly typed tool setting values. The feature can be downloaded as a ZIP archive from the
PSoC Creator downloads page:

http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide

PSoC Creator CMSIS Pack: This downloads as "com.cypress.cmsis.pack.crossgcc_1.0.7.zip".

To install this feature:

1. Download the ZIP archive file.

2. In Eclipse, go to the Help menu and select Install New Software…

3. On the Install dialog, click Add... Then on the Add Repository dialog, enter the path to your downloaded ZIP file
as the Location value and click OK.

4. The Install dialog will populate as shown. Select the PSoC Device Project Utilities check box and click
Next >.

http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 392

5. On the next page, accept the license agreement and click Finish. The feature will be installed and you must
restart Eclipse to complete the installation.

This feature provides the following entries in a project's toolchain options:

◼ Postbuild command, including a call to cypdlelftool.exe to finish preparing a flash image file

◼ Assembler flags: -mcpu=<core> -mthumb options

◼ Compiler flags: same, plus -I include paths

◼ Linker: same, plus -specs=nano.specs and -T <path to PDL GCC linker script>

◼ Linker: adds -Wl,--start-group and -Wl,--end-group options around linker inputs

Creating a New Design Project

After the one-time configuration steps to set-up Eclipse and the CMSIS Pack system, you can proceed with steps to
bring the PSoC Creator design into Eclipse.

Installing the CMSIS Pack File

The steps you performed in PSoC Creator created a CMSIS Pack file for your configured PSoC 6 device. You now
need to install that CMSIS Pack in your CMSIS Pack root folder, where CMSIS compliant tools will locate it. This
needs to be performed only once.

◼ If you have the Keil µVision 5 or later toolset installed, this is straightforward. In your file system explorer
window, navigate to your PSoC Creator design folder, and then into the folder named Export and then into the
folder named Pack. You will find a file with an extension of .pack, for example Cypress.Design01.1.0.0.pack.
Double click on this file to launch the Keil PackUnzip tool to complete the installation step.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 393

◼ If you do not have Keil µVision 5 or later installed, there are two scripts provided in your PSoC Creator
installation that can be used to perform this same task: PackInstall.bat (for Windows only) and PackInstall.bash.
These scripts are located in the same folder as your .pack file above. Their command lines are as follows:

PackInstall.bat <packFile> [<destFolder>] [/force]

- or -

PackInstall.bash <packFile> [<destFolder>] [-force]

□ packFile: path to the .pack file generated by PSoC Creator

□ destFolder: the folder where the .pack file contents are to be installed. If omitted, the current

working directory is used.

□ /force / -force: remove and overwrite any existing files in the destFolder [optional]

Note These scripts require that you have 'unzip' available via your Path environment variable. To temporarily
change the PATH variable in a command line session, type the following:

PATH=%PATH%;<full_path_to_unzip_folder>

You can also permanently edit your Path environment variable and provide the full path to the "unzip" folder, usually
C:\Program Files\unzip.

Creating the Eclipse Project

A new project type exists for CMSIS-Pack-based designs to speed user project creation. This helps to quickly
generate new projects based on CMSIS-Pack firmware content. To create a new project:

1. Create a project via the File > New > C Project menu entry.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 394

2. On the C Project page:

□ Enter a project name.

□ Under Project type, select CMSIS C/C++ Project.

□ Under Toolchains, select Cross GCC.

□ Click Next >.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 395

3. On the CMSIS C/C++ Project page, select Adapter for Cypress Cross GCC toolchain and click Next >.

Note Do not select the Create default main.c file check box. See Including Application Files in the Project.

4. On the Select Device page, select the appropriate device and click Next >.

Note For PSoC 6 devices, both CM0+ and CM4 core entries will be shown. Eclipse projects can only be built
for one processor core, so select the appropriate core for the project you are configuring, either CM0+ or CM4.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 396

Note If you created a CMSIS Pack with a custom vendor name, it will still be listed in the Cypress section of the
following dialog, as this list is organized by hardware device vendor.

5. On the next page, accept the configurations (Debug and Release) and click Next >.

6. On the Cross GCC Command page, enter the prefix arm-none-eabi- and the path to your ARM GCC

toolchain. The ARM toolchain shipped with PSoC Creator releases can be used.

Note You will only need to enter these values for the first CMSIS-Pack project you create. These values will
auto-populate in the dialog fields for subsequently created projects.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 397

7. Click Finish and the project will be created.

Initial Project Setup

There are several initial steps that must be taken before this newly created project will build. These steps only need
to be performed once per newly created project.

Note The New Project wizard toolchain selection page (see Creating a New Design Project) includes a check box
for creating a default main.c file. Unfortunately, this creates a default for ARM tools, which is not appropriate for
PSoC device development.

Importing PDL Firmware

To import the device's firmware into the project, go to the RTE Config file pane, under Packs:

◼ Unselect the Use all latest Packs check box.

◼ Under the Selection column, select "fixed" from the drop down menu for the CMSIS Pack that PSoC Creator
created for your configured PSoC 6 device. All other unused packs should be excluded.

Then under Components, check the following boxes under the Sel. column:

◼ Device > Startup

◼ PDL > Drivers

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 398

This file editor pane was opened when you first created the project. Make sure you save this file; the selected
firmware will be included in your Eclipse project source and be listed in the Project Explorer pane.

Including Application Files in the Project

PSoC 6 projects typically require the following files:

◼ main*.c file

◼ cyapicallbacks.h file

◼ linker script file

You may need different files depending on your configuration. You can include the original copies of these files from
your PSoC Creator project or create new ones from template files.

Include Original Files

To include the original copies of these files from your PSoC Creator project:

1. Right-click on the project and select Import.

2. On the Import dialog Select step, expand General and select File System; then click Next >.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 399

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 400

3. On the Import dialog File system step, navigate to the <project>.cydsn folder, select the files, and click Finish.

Create new Files

Template files for your project have been added to the toolchain adapter plug-in. These files can be added to your
project as follows:

1. Select the project in the Project Explorer.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 401

2. Right click and select New > Files from CMSIS Template to open the New Files from CMSIS Template dialog.

3. Select the file(s) to include in your project and click Finish.

In order for your builds to pick up the newly added files, add a new include path entry as follows:

1. Select the project in the Project Explorer.

2. Right-click on the project and select Properties to open the Properties dialog.

3. Under C/C++ Build, select Settings.

4. On the Tool Settings tab, under Cross GCC Compiler, select Includes.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 402

User Commands:

PSoC Creator provides the ability to insert pre-build and post-build user commands during project builds. However,
these steps are not included in the files generated for integration into third-party IDEs. For Eclipse, you can edit
your project's settings (under the project's Properties > C/C++ Build > Settings) on the Build Steps tab. PSoC
Creator provides a call to our generated pre-build and post-build scripts where needed; you can add your own
commands, separating all commands with semicolons.

Note If you see errors like the following while building a design containing a CapSense or other Components
making use of floating point hardware, you must enable the use of floating point hardware.

Error:

Caps_s.elf uses VFP register arguments

To fix this, add the following to your Assembler/Compiler/Linker toolchain options:

-mfloat-abi=softfp

Note If you are running Eclipse on linux or macOS, change the extension of the pre-build and post-build scripts
from .bat to .sh to use the shell scripts provided by PSoC Creator.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 403

Multi-Project Build

While PSoC 6 projects for devices with two cores are represented as a single project in PSoC Creator, other third-
party IDEs including Eclipse require one project per processor core. For a PSoC 6 device with two cores, Eclipse
requires that you create two projects, one for CM4 code and one for CM0+ code.

You must complete a dependency from your CM4 to the CM0+ project as follows:

In your CM4 project, you must right-click on the project name in the Project Explorer pane and select Properties.
From there, select C/C++ Build and then Settings. On the Build Steps tab, the postbuild command will have an
argument that resembles:

"${workspace_loc}\\OTHER_PROJ\\${ConfigName}\\OTHER_PROJ"

The values OTHER_PROJ above need to be replaced with the name of your CM0+ project.

In order to build the full design, you should first build your CM0+ project and then your CM4 project. If you have
modified the CM0+ project but not the CM4 project, you should perform a clean and then a build on the CM4 project
to ensure that the combined image is correctly regenerated.

PSoC 6 Debug Flow Using Eclipse/J-Link

Install Required Software

This process was tested using the Windows OS only. Install the following additional software, as needed:

◼ J-Link Software and Documentation Pack V6.30 (https://www.segger.com/downloads/jlink)

◼ GNU ARM Eclipse (https://gnuarmeclipse.github.io/plug-ins/install/), in particular the GNU ARM C/C++ J-Link
Debugging plug-in

Program Flow

1. Create a new configuration by using 'Create, manage, and run configurations' dialog (Run > Run
Configurations…). Create a new GDB SEGGER J-Link Debugging configuration.

2. Select the Run Configurations window.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 404

3. Select the Main tab:

◼ Set a name for the configuration in the Name field.

◼ In the C/C++ Application field, browse to the project file generated by Eclipse in Debug or Release folder
under your Eclipse project directory.

◼ Do not select the PROJECTNAME_link.out file.

◼ Click Apply.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 405

4. Select the Debugger tab:

◼ Unselect the Connect to Running Target check box.

◼ Set the Device Name based on the core.

◼ Unselect the Allocate console for semihosting and SWO check box.

◼ Under GDB Client Setup set the Executable path to "<PSoC Creator Install
Directory>\import\gnu\arm\5.4.1\bin\arm-none-eabi-gdb.exe".

◼ Click Apply.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 406

5. Select the Startup tab:

◼ Unselect the Enable semihosting check box.

◼ Unselect the Set breakpoint at check box.

◼ Unselect the Continue check box.

◼ Click Apply.

6. Close the Run Configurations dialog.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 407

7. On the main Eclipse window:

□ Click the Run button.

□ When run is completed, check if "Downloading" and "Verifying" operations complete with OK status.

□ Click the Stop button.

Debug Flow

1. Use a workspace that was created for Program Flow.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 408

2. Create a new configuration by using the Create, manage, and run configurations dialog (Run > Debug
Configurations…) and Duplicate options.

3. Select Debug Configurations window.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 409

4. Select the Main tab:

□ Set a name for the configuration in the Name field.

□ Click Apply.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 410

5. Select the Debugger tab:

□ Unselect the Connect to Running Target check box.

□ Set the Device Name per core.

□ Unselect the Allocate console for semihosting and SWO check box.

□ Click Apply.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 411

6. Select the Startup tab:

◼ Unselect the Enable semihosting check box.

◼ Select the Set breakpoint at main check box.

◼ Select the Continue check box.

◼ Click Apply.

7. Close the Debug Configurations dialog.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 412

8. On the main Eclipse window:

□ Click on triangle in the Debug button.

□ Select debug configuration.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 413

Debugging non-secure M0+ applications with JTAG:

Unselect Pre-run/Restart reset.

Add the following commands to the Run/Restart Commands:

set $sp = *(uint32_t*)0x10000000

set $pc = *(uint32_t*)0x10000004

Debugging secure M4 applications with JTAG or SWD:

Unselect Pre-run/Restart reset.

Copy the following commands to a text file. For this example, assume that the file is saved as
C:\scripts\wait_for_init.txt.

set $retry = 10

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 414

while (*(uint32_t*)0x402102c0 == 0xFFFFFC00) && $retry > 0

 set $retry = $retry - 1

 # For Mac/Linux

 #shell sleep 1

 # For Windows

 shell timeout /T 1

end

Add the following commands to the Run/Restart Commands:

source C:/scripts/wait_for_init.txt

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 415

Setting up a PSoC 6 IAR Project

This section covers the process for using generated PSoC 6-based PSoC Creator design files in the IAR
environment. If not already done, refer to Generating PSoC 6 Files for 3rd Party IDEs for the process to generate
the necessary IAR files.

Note If you do not have IAR installed, PSoC Creator will perform the generation with the assumption that IAR
version 7.10.3 or higher will be used to create an IAR project. If IAR is installed, PSoC Creator will use that version
of IAR. However; when you create your project in IAR, you need an IAR version that includes PSoC 6 devices.

1. Launch IAR Embedded Workbench for ARM (EW-ARM).

2. Create a new Empty project (Project > Create New Project), and save the project in the PSoC Creator
<project>.cydsn directory.

Note For a PSoC 6 multi-core design, two project connection files (DesignName CoreName.ipcf file) are
generated by PSoC Creator; therefore, you need to create IAR projects for each core by repeating these steps
for each core. Projects need to be created in the same directory as a requirement.

3. Open the IDE Options dialog (Tools > Options).

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 416

□ Select Project in the tree.

□ Select the Enable project connections.

□ Click OK.

4. Open the Add Project Connection dialog (Project > Add Project Connection).

□ Select IAR Project Connection.

□ Click OK.

5. On the Select IAR Project Connection File dialog, browse to the PSoC Creator Export directory, select the
<project>.ipcf file, and click Open.

6. In the EW-ARM Workspace window, right-click on the project and select Options... to open the Options dialog.

7. For dual core designs, it is important to specify two different folders for the object files and list files of each
core-specific project. You can leave "Debug\Obj" and "Debug\List" folders for the CortexM0p-based project and
change the name of these folders for CortexM4-specific project. For CortexM4-specific project, on the General
Options page, select Output tab, and change the Obj and List folder names in Object files and List files text
boxes, respectively. Keep the content of Executables/libraries text box as is.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 417

Notice that PSoC Creator post-build scripts for the CortexM4 consider the default executable output directory
"Debug\Exe" for the CortexM0p based project. If you are changing the default executable output directory for
the CortexM0p-based project, make sure you update the variable "CORTEXM0P_OUTPUT_DIRECTORY"
under the IAR section in the postbuildCortexM4.bat and postbuildCortexM4.sh scripts located in the
<project>.cydsn\Export directory.

8. On the Debugger page, click the Driver drop-down menu and select the appropriate debugger probe: either I-
jet/JTAGjet or J-Link/J-Trace.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 418

9. On the Debugger page, select the Download tab and check the Use flash loader(s) option.

10. Under "Category," select the appropriate debugger option.

□ For I-jet/JTAGjet, select the JTAG/SWD tab and set appropriate options.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 419

□ For J-Link/J-Trace, select the Connection tab and set the appropriate options.

11. On the Build Actions page, enter appropriate pre-build and post-build commands.

PSoC Creator provides the ability to insert pre-build and post-build user commands during project builds.
However, these steps are not included in the files generated for integration into third-party IDEs. For IAR, add
these commands to the projects options. PSoC Creator provides a call to our generated pre-build and post-
build scripts where needed; you can add your own commands, separating all commands with semicolons.

12. Click OK to close the Options dialog.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 420

Note For multi-core projects, you need to build the projects for each core in the ascending order from the lower
core number to the higher. For example, if you have two projects based on CortexM0p and CortexM4, first build the
CortexM0p project then build the CortexM4 project. The output file for CortexM4 project will have the combined
image of both projects. If you have modified the CortexM0p project but not the CortexM4 project, you must perform
a "rebuild all" on the CortexM4 project to ensure that the post-build step is executed.

Setting up Multi-core Debugging

If you are using IAR's multi-core debugging feature, you must configure your two projects as follows:

1. Select the Enable multicore master mode check box for the CortexM4 project, and set the slave project to the
CortexM0p project.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 421

2. In the debug probe configuration, set the Reset mode to "System (default)."

3. For the CortexM0p project, select the Suppress Download check box.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 422

4. In the probe configuration, set the Reset mode to "Disabled (no reset)."

You can now build, program and debug your EW-ARM project. Refer to the IAR documentation as needed.

For information about how to use the IAR I-jet/Debugger system, go to the IAR IDE. In the Help menu, open the
documents named C-SPY Debugging Guide and I-jet User Guide.

For information about J-Link, refer to the Segger J-Link documentation.

Creating µVision Projects for PSoC 6

Note You need µVision 5 or later to import CMSIS Pack in µVision.

For PSoC 6-based designs, PSoC Creator does not generate a µVision project. You must create a µVision project
per core and build them in the ascending order based on the core numbers. For example, if your design uses two
cores: CortexM0P and CortexM4, first build CortexM0P-based project, then build the CortexM4-based project. The
.axf file for CortexM4 project will have the combined image of both projects.

When you build a PSoC 6-based design for use in µVision, you must choose the CMSIS-Pack Generate option on
the Target IDEs Build Settings dialog. As part of a build, PSoC Creator generates a CMSIS-Pack for your design.
The pack will include Component firmware and peripheral driver library (PDL) files, based on the selected PDL (see
Peripheral Driver Library). You can choose to use a different compatible PDL pack in the µVision Manage Run-Time
Environment, instead of including the PDL used to build your design in PSoC Creator.

After building your design in PSoC Creator, the generated CMSIS-Pack is located in
<project_name.cydsn>/Export/Pack folder (Cypress.<pack_name>.<version>.pack for example,
Cypress.MyPack.1.0.0.pack). Specify the <pack_name> and <version> on the Target IDEs Build Settings dialog.
The following additional steps are required for a PSoC 6-based µVision project. You will need to create a project for
one core, and then repeat the steps to create another project for the second core, with the exceptions noted:

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 423

1. Double-click the pack file to install it in the default location for packs.

2. Open µVision and create a µVision project.

Note You must create the project for the second core in the same folder as the first project.

Note It is important to specify two different folders for the object files of each core-specific project. When
building a project, µVision automatically generates an output directory named "Objects" in the directory that the
µVision project exists, unless you specify another directory through "Options for Target" dialog, Output tab. You
can leave the "Objects" folder for the CortexM0p-based project and create another output folder in the µVision
project directory, for example named "Objects_M4", for the CortexM4-based project. Then, before building the
CortexM4-based project, open "Options for Target" dialog, navigate to Output tab and from Select folder for
objects, navigate to the output folder that you created.

The generated pack includes the device information for multiple cores. When you create a project, choose the
device per target core from the pack. The device specified in the µVision project must match precisely the
device in the CMSIS Pack. This is important for step 6.

3. As part of creating a µVision project, the Select Device for Target dialog will display. Select the newly installed
pack and appropriate core for the project from the list shown.

Note If you created a CMSIS Pack with a custom vendor name, it will still be listed in the Cypress section of
this dialog, as this list is organized by hardware device vendor.

4. The Manage Run-Time Environment dialog will open. Click the Select Packs button.

5. On the Select Software Packs for Target dialog:

□ Unselect the Use latest versions of all installed Software Packs check box.

□ Under the Selection column, select "fixed" from the drop down menu for the CMSIS Pack that PSoC
Creator generated for your configured PSoC 6 device. All other unused packs should be excluded.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 424

□ Click OK.

6. On the Manage Run-Time Environment dialog, select Device/Startup and PDL/Drivers.

Note If at this point you do not see the required software components, check the device used in your µVision
project. The device must match the device used in the CMSIS Pack, or the software components will not
appear.

Note The PDL/Drivers are the PDL files that PSoC Creator used to build your design and included in the
generated pack specific to your design. You have the option to not select the PDL files from the PSoC Creator
generated pack, and instead use other PDL files compatible with your design. If you install a PDL pack, select it
in the Select Software Packs for Target dialog, and it will be available in the Manage Run-Time Environment.

7. Click OK to close the Manage Run-Time Environment dialog.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 425

8. Then in the main µVision window, add the application files to your µVision project. Application files include
main_<core>.c and any other file you might have added to your design. You can add application files to the
Source Group.

If you have not added any code to these files, you can create new ones quickly in your µVision project as
follows:

□ In the Project window, right-click on the Source Group folder and select Add New Item to Source
Group...

□ On the Add New Item to Group dialog, select the "User Code Template" icon in the left pane, and
create the linker scatter file from the template, because later steps in this process will expect it.

□ You can also create your main_<core>.c and any application files from the templates provided.

Next Steps:

1. Open the "Options for Target" dialog.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 426

2. For dual core designs, when creating a CortexM4-based project, create a new folder for objects in the same
directory as the project exists, and name it different than the folder for objects for CortexM0p-based project
(default is "Objects"). Then, navigate to the Output tab and from Select folder for objects navigate to the
folder that you created.

Notice that PSoC Creator post-build scripts for CortexM4 consider the default output directory "Objects" for a
CortexM0p-based project. If you are changing the default output directory for a CortexM0p-based project, make
sure you update the variable "CORTEXM0P_OUTPUT_DIRECTORY" under the CMSIS section in the
postbuildCortexM4.bat and postbuildCortexM4.sh scripts located in the
<pack_vendor_name>\<pack_name>\<pack_version>\Device\<deviceName_projectName >\Other directory.
Clear the read-only flag of a build script file before modifying it.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 427

3. Select the C/C++ tab, and then select/add the following:

□ Select C99 Mode option (PDL is developed based on C99).

□ Add the design directory or any other directory containing the application files to the Include Paths.

□ For CortexM4-based projects add --fpu=fpv4-sp to Misc Controls.

4. Select the User tab. The path to pre/post build scripts for PSoC 6 devices is similar to the following.

$KARM\PACK\Cypress\Design01\1.0.0\Device\CY8C68237BZ-
BLE_Design01\Other\postbuildCortexM0p.bat "#L" -p "$P" "cmsis"

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 428

"$KARM\PACK\Cypress\Design01\1.0.0\Device\CY8C68237BZ-BLE_Design01\Other\win\elf"

Since the pack includes the script, Cypress uses the default pack path and the command. It will be filled
automatically, but you can double check it. If you are using a custom path for pack installation directory, you
need to modify the post-build command to replace $KARM\PACK with your custom pack installation directory.

Note PSoC Creator provides the ability to insert pre-build and post-build user commands during project builds.
However, these steps are not included in the files generated for integration into third-party IDEs. You can add
these commands on the User tab. PSoC Creator provides a call to generated pre-build and post-build scripts
where needed. You can add your own commands in the unused entry fields on this tab.

5. Select the Linker tab and unselect the Use Memory Layout from Target Dialog check box.

Provide the path to the linker according to the processor in your project. The path to linker script file will be
similar to the following:

.\cy8c6xx7_cm0plus.scat

For CortexM4-based projects add --fpu=fpv4-sp to Misc Controls.

6. Click OK to accept all the changes, close the settings dialog, and build the code.

Note The linker files used by PSoC Creator are generic to handle all common use cases. Your project may not
use every section defined in the linker file. In that case, you may see warnings during the build process. You
can ignore or suppress the warning, or modify the linker command file to eliminate the warning.

Setting Up ULink2/ULink Pro and Segger J-Link Debugger Probes for PSoC 6

These steps are for users of the ULink2/ULink Pro and Segger J-Link debugger probes. These instructions apply
only to PSoC 6 devices.

If not already running, launch µVision, open your project, and select your build target. Then follow these steps.

Note The probe must be connected to the host computer and to the board for these instructions.

1. Select Project > Options for Target to open the dialog, and go to the Debug tab.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 429

2. Select the appropriate debugger and click on Settings.

Note Do not select the Cypress MiniProg3 option, it does not yet work with PSoC 6. Select the correct ULINK
or J-LINK option.

When using the Segger J-Link debugger for dual core devices, if you launch the J-link device detection dialog
for the project for the first core, it will generate a JLinkSettings.ini file in the project directory. In this case, when
you launch the J-Link device detection dialog for the project for the second core, make sure you first delete the
JLinkSettings.ini file from the project directory.

3. On the Driver Setup dialog, on the Debug tab, select the appropriate Port (SW or JTAG).

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 430

For ULink2/ULink Pro debuggers, do the following:

□ Set AP (Access Port) settings: For CM0p, use 0x01; for CM4, use 0x02.

□ Select "VECTRESET" for Reset.

□ Unselect the Reset after Connect check box.

For Segger J-Link Debuggers, select "Core" for Reset.

For PSoC 6, select "Core" when debugging the CM0p and "Normal" when debugging the CM4.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 431

4. Click on the Flash Download tab and select Erase Sectors.

The *.FLM file should be present in a path similar to the following, based on the µVision installation directory
and your chosen pack name information:

C:\Keil_v5\ARM\PACK\<PackVendor>\<PackName>\<PackVersion>\FLM\<CypressDeviceName>*.FLM

“RAM for Algorithm” values for Keil ULink and Segger J-Link Debuggers

PSoC Device family
RAM for Algorithm

Programming Algorithm *
Start Size

PSoC 6 0x08002400 0x8000

CY8C6xx6 (512kB) Flash

CY8C6xx7 (1MB) Flash

CY8C6xxx_WFLASH (Work Flash)

CY8C6xxx_SFLASH (Supervisory Flash

Notes:

For dual core projects, when you launch the J-link device detection dialog for the project per first core, it generates
a JLinkSettings.ini file in the project directory. To launch the J-Link device detection dialog for the project for the
second core, the JLinkSettings.ini file should be deleted from the project directory.

For more information about how to set up your project; refer to the Third-Party Tools for Cypress Devices User
Guide.pdf file in the "3rd_Party_Configuration_Files/Documents" folder in the root installation folder of PSoC
Programmer.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 432

Add SMIF Flashloaders to PDL Build

In order to add SMIF flashloaders to the build, device programming must be done in two passes:

◼ Program all internal flash (FLASH, SFLASH and optionally WFLASH). Appropriate loaders must be added in
the debugger configuration dialog and the SMIF loader must be removed from the list.

◼ Program SMIF only (only the SMIF loader must be added to the list in the debugger configuration dialog).

Therefore, SMIF loader must exist along with other loaders, but it should not be added to the list of project loaders
by default.

See Also:

◼ Target IDEs Build Settings

◼ Peripheral Driver Library Build Settings

Building PSoC 6 Designs with Make

Generated Files:

If you have enabled makefile generation in your project's Target IDEs Build Settings page, the following files will be
generated on successful completion of a project build:

File Notes Location

makefile
Top-level GNU Make compatible makefile.

This file may be updated or altered as desired.

project directory

(<project_name>.cydsn)

platform_debug.mk

- or -

platform_release.mk

Platform and toolchain specific configuration. The Target IDEs feature

will generate a platform_debug.mk or platform_release.mk file,

depending on whether PSoC Creator is configured to create debug or

release builds (see Building a PSoC Creator Project).

These files may be updated or altered as desired.

app_source.mk
Application firmware source.

This file may be updated or altered as desired.

gen_source.mk

PSoC Creator generated source code. This file is generated in the

Generated_Source/PSoC6 folder.

This file should NOT be modified. It is automatically re-written by PSoC

Creator as a part of the build process.

This file is written out for the selected toolchain. Later, it will be updated

during each build process, based on the current toolchain in the Build

Settings. That is, if you build and change from GCC to MDK, the

makefiles will likely not work. The gen_source.mk file will contain source

code that is not supported by the toolchain in platform_debug.mk (or

platform_release.mk). Either update the platform configuration file, or

use the Target IDEs feature to regenerate the files for the new toolchain.

<project_name>.cydsn/

Generated_Source/PSoC6

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 433

Important Notes:

◼ Since the Make utility does not reliably support files with spaces or $ in the file name, PSoC Creator avoids
using them. Also, the tool avoids using colons and slashes in the names of files and folders because some
operating systems and drive formats use these characters as volume and directory separators. Furthermore,
non-alphanumeric characters may not be supported by all file systems or operating systems. Punctuation
marks, parentheses, quotation marks, brackets, and operators, such as following, are often reserved for special
functions in scripting and programming languages:

 , [] { } () ! ; " ' * ? < > |

Therefore, PSoC Creator checks the design project name and user source files for white spaces and those
special characters in their names. PSoC Creator performs the check as part of the build and the error message
specifies the affected files. In this situation you need to address the errors and try to re-build the design.

◼ When making the makefile for a dual core project, it generates the elf file and hex file per core and locates the
files related to each core under a directory with the core name (for example: output/debug/CortexM4). Then it
merges them together and locates the final elf and hex files in the make output directory (for example:
output/debug).

◼ The makefile uses BASH scripts (prebuild.sh and postbuild.sh) by default. If you would like to use BATCH
scripts, you need to modify the makefile appropriately.

◼ If you are using Windows, you need CYGWIN (Make package) or MSYS installed in your machine. Cypress
has tested this feature on CYGWIN_NT-6.3-WOW64 1.7.33-2(0.280/5/3) i686 cygwin (Make 4.0), and
MinGW32_NT-6.1 1.0.18(0.48/3/2) 2012-11-21 i686 Msys (Msys 2013072300).

◼ If you would like to use another toolchain rather than the one used during the build, you can modify the
platform_debug.mk/platform_release.mk file to remove the text in front of the TOOLCHAIN_DIR variable and
write the path to the target toolchain instead. Be sure to change back slashes to forward slashes in the path.

◼ You need to install ARM GCC on Linux OS. It can be downloaded from: https://launchpad.net/gcc-arm-
embedded/

◼ The additional library files to link, which you added to your design through the Build Settings dialog (that is, by
using the linker's -L and -l arguments), will be populated as linker options in the
platform_debug.mk/platform_release.mk file. You may add more library files to the APP_LIBS section in the
app_source.mk file.

◼ If you generate a makefile, but then make significant changes to your design (for example, changing the
selected toolchain) and regenerate a new makefile, you must run "make clean" before running "make" to
ensure your make-based build is properly up to date.

◼ PSoC Creator provides the ability to insert pre-build and post-build user commands during project builds.
However, these steps are not included in the files generated for integration into third-party IDEs. For generated
makefiles, you can add these commands to the top-level makefile, as part of the prebuild_* and postbuild_*
rules.

◼ PSoC Creator only propagates project-level Build Settings, such as compiler optimization level. The export
process does not support propagation of file-level Build Settings to the makefile.

See Also:

◼ Generating PSoC 6 Files for 3rd Party IDEs

◼ Build Settings

https://launchpad.net/gcc-arm-embedded/
https://launchpad.net/gcc-arm-embedded/

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 434

PSoC 4 and PSoC 5LP Designs

This section contains the following topics:

◼ Exporting a Design to 3rd Party IDEs

◼ Using PSoC 4/PSoC 5LP Designs with 3rd Party IDEs

Exporting a Design to 3rd Party IDEs

The IDE Export Wizard dialog provides support for developing application firmware in 3rd party development
environments. Once the design has been exported, you can write, debug, and test firmware in your preferred
environment.

Note This wizard applies to PSoC 3, PSoC 4, PSoC 5LP and FM0+ devices only. It does not apply to PSoC 6
devices. For PSoC 6 devices, use the Target IDEs section of the Build Settings dialog to choose third party IDEs
for which to generate files. For PSoC 3 devices, see Exporting a PSoC 3 Design to Keil µVision IDE. For FM0+
devices, see Exporting a FM0+ Design to Makefile.

The export process supports the generation of new projects, as well as updates to existing ones. With the update
option, you can make last-minute changes to the hardware and quickly update your project.

To Open this Dialog:

1. Develop your PSoC Creator design as usual.

Note If you want to program the device using JTAG in your desired 3rd party IDE, you must set the Select
Debug option to JTAG in PSoC Creator System Editor.

2. When complete, click the Project menu and select Export to IDE...

To Perform the Export:

Depending on the selected device, you can export the design to the 3rd Party IDEs shown on the dialog. Select one
of the appropriate options, and refer to the related section for more information.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 435

◼ Exporting a Design to Eclipse IDE

◼ Exporting a Design to IAR IDE

◼ Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE

◼ Exporting a Design to Generated CMSIS-Pack

◼ Exporting a Design to Makefile

IMPORTANT All devices using 3rd party programmers except µVision using MP3 require that the project exported
to the appropriate IDE have a System Editor Debug Select value of anything other than GPIO. If a project with
Debug Select set to GPIO is exported, it will be able to program only one time. Subsequent attempts to program
via the 3rd party will fail. This is a limitation of the ARM standard acquire sequence, which is not aware of the
special acquire sequence used by Cypress for our devices.

Notes

◼ If the project has not been built, you will be prompted to build it.

◼ If the project is out of date, you will be prompted to re-build it.

Exporting a Design to Eclipse IDE

Overview

Users can export designs from PSoC Creator and continue firmware development work in Eclipse. After the initial
export, users can re-export additional hardware configuration changes from PSoC Creator to Eclipse. Eclipse will
detect such changes and update the design accordingly. The reverse is not true. Do not attempt to import firmware
changes made in Eclipse back into PSoC Creator.

Note The Export to IDE wizard does not apply to PSoC 6 devices. For PSoC 6 devices, use the Target IDEs section
of the Build Settings dialog to choose third party IDEs for which to generate files.

Within Eclipse, users can archive their project in order to snapshot a design and supply it to another firmware
developer using Eclipse.

Users must initially install and configure Eclipse as outlined in Eclipse Installation Configuration.

Export a Design to Eclipse IDE

To export your PSoC Creator design for use in the Eclipse IDE, select the "Eclipse" option on the IDE Export
Wizard dialog.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 436

Note For PSoC 6 devices, use the Target IDEs section of the Build Settings dialog, and enable the CMSIS Pack
option.

Note The Eclipse IDE option is not available for PSoC 3 projects.

The process is simple. The next step is to confirm that you want to export the design. Click Export.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 437

Once the export completes, the final step displays.

◼ Use the Copy project path to Clipboard button to copy the project folder path so you can paste it in the
Eclipse New Project dialog as the location path.

◼ Select the Open Eclipse Export Documentation option to display this document.

◼ Select the Open containing folder option to open a folder showing all the files that were exported.

Select the appropriate options and click Finish to complete the export process.

Notes:

◼ The project folder created in Eclipse shares file system folders with the original PSoC Creator project. This is
required so that changes to merge regions in any Component files made within Eclipse by a firmware developer
can be seen within PSoC Creator during any subsequent updates, and vice versa.

◼ When deleting a project in Eclipse, do not check the Delete project contents on disk check box. This will
remove the file system folder contents, making them unavailable in PSoC Creator as well.

Next Steps:

◼ Import into Eclipse (see also Eclipse Installation Configuration)

◼ Flashing and Debugging in Eclipse

◼ Eclipse Bootloader Support

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 438

Exporting a Design to IAR IDE

To export your PSoC Creator design for use in the IAR IDE, select the "IAR" option on the IDE Export Wizard
dialog.

Note The Export to IDE wizard does not apply to PSoC 6 devices. For PSoC 6 devices, use the Target IDEs section
of the Build Settings dialog, and enable the IAR option.

Click Next > to go to the Application Files page to select what non-generated code to export to the project:

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 439

Click Next > to go to the next page of the wizard to show the actions that will occur (such as exporting the selected
project XML files).

Click Export. The wizard will show the success/failure of the export actions and provide a link to extended
documentation on what the user needs to do now.

Optionally select the following action(s) when the export process completes:

□ Open the IAR EWARM Export Documentation. See Steps for Setting up the IAR Project.

□ Open the folder containing the project files

Click Finish to close the wizard.

See Also:

◼ Exporting a Design to 3rd Party IDE

◼ Steps for Setting up the IAR Project

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 440

Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE

PSoC Creator supports multiple PSoC devices as well as multiple versions of the Keil µVision IDE. This topic
applies only to PSoC 4/PSoC 5LP devices only.

◼ PSoC 4/PSoC 5LP device projects can be exported to either µVision 4 or µVision 5 IDEs.

◼ PSoC 6 devices use a different process. See the Target IDEs section of the Build Settings dialog to choose
third party IDEs for which to generate files.

◼ The export to µVision IDE process is slightly different for PSoC 3 devices than it is for PSoC 4 and PSoC 5LP
devices. See Exporting a PSoC 3 Design to Keil µVision IDE.

◼ The Export to Generated CMSIS-Pack option applies only to PSoC 4 and PSoC 5LP devices, and it applies
only to the µVision 5 IDE. See Exporting a Design to Generated CMSIS-Pack.

Note The Export to IDE wizard does not apply to PSoC 6 devices. For PSoC 6 devices, use the Target IDEs section
of the Build Settings dialog to choose third party IDEs for which to generate files.

Use PSoC Creator to develop a PSoC hardware design. Then use either PSoC Creator or Keil's µVision IDE for
firmware development. To use the µVision IDE, you must build the design in PSoC Creator and then use the Export
to IDE feature.

Note PSoC Creator supports the Advanced System Viewer in Keil µVision. Ensure that you have the appropriate
version of µVision to support CMSIS-SVD.

Note When building a project in µVision, all output is written into the UV4Build directory found in your project
directory.

For PSoC 4/PRoC BLE/PSoC 5LP, the build and export process is the same for new projects or updated projects.

Changing Device Architectures

Creating and exporting a project using µVision and then changing the device to a different architecture (for
example, PSoC 3, PSoC 4, PSoC 5LP, etc.) and re-exporting is not supported. If you wish to do this, you must
manually delete your µVision project (*.uvproj *.uvprojx) before re-exporting. Then, follow the appropriate
instructions for the new PSoC device and version of µVision.

Exporting a New PSoC Creator Design:

The initial flow is to create a design in PSoC Creator and export the design to the µVision IDE.

1. Create your design in PSoC Creator in the usual manner.

2. Use the Project > Export to IDE menu option to open the IDE Export Wizard dialog.

3. If you have not built the design, you will be prompted to build at this time.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 441

4. Click Yes to build. If you click No, the export process will be cancelled.

After a successful build, the IDE Export Wizard opens.

5. If not already selected, select the µVision option. Click Next > to continue.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 442

PSoC Creator checks whether MiniProg3/KitProg drivers have been registered with µVision. If they are not
registered, the MiniProg3/KitProg support for µVision step opens. However, if PSoC Creator locates a µVision
installation with MiniProg3/KitProg support enabled, then it will skip this step.

Note PSoC Creator only examines the first µVision installation found to see if it has MiniProg3/KitProg drivers
properly registered. If you have multiple copies of µVision installed on your computer, the auto-detection
process may not be accurate. If you are sure you already have drivers registered, you may skip this step of the
wizard.

6. If you need to register the drivers, click Install Drivers for µVision and follow the prompts on the installation
wizard. This process is only required once. See Registering MiniProg3/KitProg Drivers for more information.

7. If you need to register drivers with another µVision installation, go to the PSoC Creator Tools menu and select
Install drivers for µVision to launch the installation wizard.

8. Click Next > to continue.

The Application Files step opens.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 443

□ Select the files you want added to your new µVision application project.

Note The wizard does not copy these files when exporting. It simply adds references to the existing
files to the µVision application project.

□ To start with an empty µVision application project, click the Unselect All button.

□ Once the initial export is complete, build settings and file management must be performed within the
µVision environment. For example, if you want to add a new source file, select File > New in µVision.

9. Click Next > to continue.

The Review export details step opens.

10. Review the export details and click Export.

The final step opens showing the completed export.

Optionally select the following action(s) when the export process completes:

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 444

□ Open the project in µVision

□ Open µVision Export documentation

□ Open the folder containing the project files

11. Click Finish to close the wizard.

Note If you select the Open the project in µVision option and if you have multiple versions of the µVision IDE
installed (for example version 4 and version 5), this option will launch the version you installed most recently. In this
case, if version 4 does not launch, close the µVision 5 IDE, and launch version 4 manually.

See Also:

◼ Key IDE Export Files/Projects

◼ Opening PSoC 4/PSoC 5LP Projects in µVision IDE

◼ GCC Settings in µVision

◼ Flash Programming/Debugging using µVision

◼ PSoC Creator Toolchain Settings

◼ Registering MiniProg3/KitProg Drivers

◼ Miscellaneous Export Notes

Exporting a Design to Generated CMSIS-Pack

Use PSoC Creator to develop a PSoC hardware design. Then use either PSoC Creator or Keil's µVision IDE for
firmware development. To use the Generated CMSIS Pack, you must build the design in PSoC Creator and then
use the Export to IDE feature.

Note PSoC 3 devices are not supported to be exported using this feature and can be exported through Export to
µVision feature. See Exporting a PSoC 3 Design to Keil µVision IDE.

Note The PSoC Creator export process generates a Generated CMSIS Pack specific for the PSoC Creator design
being exported. You can define information for this pack during the export process. Also as part of the export, a file
with the same name of the project and .gpdsc extension will be created. This is used by µVision to detect the
exported software pack for the design.

Note When building a project in µVision 5 using ARM MDK toolchain, all output is written into the UVBuild directory
found in your project directory.

The build and export process is the same for new projects or updated projects.

Note The Export to IDE wizard does not apply to PSoC 6 devices. For PSoC 6 devices, use the Target IDEs section
of the Build Settings dialog to choose third party IDEs for which to generate files.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 445

Changing Devices

Creating and exporting a project using µVision and then changing the device and re-exporting is not supported. If
you wish to do this, you must manually delete your µVision project (*.uvproj *.uvprojx) before re-exporting. Then,
follow the appropriate instructions for the new PSoC device and version of µVision

Exporting a New PSoC Creator Design:

The initial flow is to create a design in PSoC Creator and export the design to the µVision IDE.

1. Create your design in PSoC Creator in the usual manner.

2. Make sure that µVision 5 is closed when you perform the export to µVision 5 generated software pack. If not
you have to re-start µVision after Export to refresh the generated pack. Use the Project > Export to IDE menu
option to open the IDE Export Wizard dialog.

3. If you have not built the design, you will be prompted to build at this time.

4. Click Yes to build. If you click No, the export process will be cancelled.

After a successful build, the IDE Export Wizard opens.

5. If not already selected, select the Generated CMSIS-Pack option. Click Next > to continue.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 446

PSoC Creator checks whether MiniProg3/KitProg drivers have been registered with µVision. If they are not
registered, the MiniProg3/KitProg support for µVision step opens. However, if PSoC Creator locates a µVision
installation with MiniProg3/KitProg support enabled, then it will skip this step.

Note PSoC Creator only examines the first µVision installation found to see if it has MiniProg3/KitProg drivers
properly registered. If you have multiple copies of µVision installed on your computer, the auto-detection
process may not be accurate. If you are sure you already have drivers registered, you may skip this step of the
wizard.

6. If you need to register the drivers, click Install Drivers for µVision and follow the prompts on the installation
wizard. This process is only required once. See Registering MiniProg3/KitProg Drivers for more information.

7. If you need to register drivers with another µVision installation, go to the PSoC Creator Tools menu and select
Install drivers for µVision to launch the installation wizard.

8. Click Next > to continue.

The Pack Generation step opens.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 447

9. Enter the appropriate information, as follows:

□ Vendor: Enter the Vendor name shown in the µVision 5 software pack.

□ Pack: Enter the Project name of the µVision 5 Pack.

The pack name will be combined with the device part number to present the device name in the
µVision environment. µVision restricts the device name to be a maximum of 48 characters. So, the
pack name must be short enough to be combined with the other characters to make total number of
characters equal to 48 or less.

□ Version: Enter the major version, minor version, and revision number for the software pack being
exported.

□ Include the project datasheet in the pack: If applicable, select this check box to include the project
datasheet.

If the project datasheet is generated, this option is available. To add a project datasheet to the pack:

− Select Build > Generate Project Datasheet.

− Then, build the project and perform the export.

□ Install the generated pack in µVision: Select this check box to install the generated pack that will be
exported to µVision.

Note If you deselect this option, the pack will not be installed automatically. You will have to install it
manually. Refer to µVision documentation.

If you do not have µVision 5 installed, deselect this option to perform the export and generate the pack
without installing it.

Optionally, you can download µVision 5 from the link provided.

□ Path to µVision 5 tools ini: This shows the default path to the TOOLS.INI file in the µVision 5
installation directory.

If you would like to export to another installed version of µVision 5 IDE on your computer, click the
ellipsis [...] button and navigate to the appropriate directory.

10. Click Next > to continue.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 448

The Application Files step opens.

□ Select the files you want to add to your new µVision application project.

Note The wizard does not copy these files to the pack when exporting. It simply adds references to the
existing files to the µVision application project.

□ To start with an empty µVision application project, click the Unselect All button.

□ Once the initial export is complete, build settings and file management must be performed within the
µVision environment. For example, if you want to add a new source file, select File > New in µVision.

11. Click Next > to continue.

The Review export details step opens.

12. Review the export details and click Export.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 449

The final step opens showing the completed export.

Optionally select the following action(s) when the export process completes:

□ Open in µVision

This option is available if you selected the Install the generated pack in µVision check box on the
Pack Generation step.

□ Open µVision Export documentation

□ Open the folder containing the project files

13. Click Finish to close the wizard.

Note Refer to the Notes for µVision 5 listed in Miscellaneous Export Notes.

See Also:

◼ Key IDE Export Files/Projects

◼ Opening Generated CMSIS-Pack Projects (µVision 5 IDE)

◼ Registering MiniProg3/KitProg Drivers

◼ Miscellaneous Export Notes

Exporting a Design to Makefile

The GNU Make is a utility that uses a Makefile to automatically determine which pieces of a large program need to
be recompiled, and then issues commands to recompile those pieces. The Makefile tells the Make utility what to do
and how to compile and link a program. Most IDEs support a simple Makefile-based build option. The PSoC
Creator Export to Makefile feature allows you to build PSoC designs in those IDEs, as well as from the command-
line.

Note For PSoC 6 devices, use the Target IDEs section of the Build Settings dialog, and enable the Makefile option.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 450

To Export to Makefile:

To export your PSoC Creator design to a Makefile, select the "Makefile" option on the IDE Export Wizard dialog and
click Next >.

Note If you previously used this feature, PSoC Creator will re-create and overwrite the Makefile and .mk files, but
will prompt you to confirm the action.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 451

The Application Files step opens.

Select which non-generated code to export to the project.

Note Only the files that are compatible with the selected toolchain will appear in the dialog. The wizard adds
references to the selected files to app_source.mk.

Click Next > to continue.

The Review export details step opens.

Review the export details and click Export.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 452

The final step opens showing the completed export.

Click Finish to close the wizard.

Using PSoC 4/PSoC 5LP Designs with 3rd Party IDEs

This section contains the following topics:

◼ Import into Eclipse

◼ Setting up a PSoC 4/PSoC 5LP IAR Project

◼ Opening PSoC 4/PSoC 5LP Projects in µVision IDE

◼ Opening Generated CMSIS-Pack Projects (µVision 5 IDE)

◼ Opening PSoC Creator Designs in Makefile

◼ Setting Up for Segger J-Link/J-Trace Debugger for PSoC 5LP

◼ Setting Up for ULink2/ULink Pro and Segger J-Link Debugger Probes

PSoC 4/PSoC 5LP Eclipse Information

Eclipse Installation Configuration

When using the Eclipse IDE, you do not need a full PSoC Creator installation during firmware development.

You must have Java JRE or JDK installed (Java version 7 or higher).

You must have a GCC ARM compiler installed. The GNU Tools Arm Embedded toolset is available at
https://launchpad.net/gcc-arm-embedded.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 453

You must install Eclipse CDT from http://www.eclipse.org/cdt. Look for the "Eclipse C/C++ IDE" download package.
The Eclipse Luna and later releases support the Cypress-provided Eclipse feature.

If you are running a 32-bit operating system, download the 32-bit version of Eclipse.

If you are running a 64-bit operating system, you should download the version of Eclipse that matches the Java
runtime version that you have installed; that is, 32-bit Eclipse for 32-bit Java or 64-bit Eclipse for 64-bit Java.

You must also have the Cypress-provided Eclipse Import feature (com.cypress.psoccreatorimport) installed, which
provides the following functionality:

◼ Speeds the creation of an Eclipse project associated with a PSoC Creator design with a new PSoC Creator
project type and pre-populating tool chain build options.

◼ Provides project resource synchronization between PSoC Creator and Eclipse. Changes made in the set of
files that constitute a project in PSoC Creator are reflected in subsequent builds in Eclipse.

Download this Cypress Eclipse Import feature from https://www.cypress.com/products/psoc-creator-integrated-
design-environment-ide under the Downloads tab, and install the downloaded zip file into Eclipse as follows:

◼ In Eclipse, select Help > Install New Software… to open the Install dialog.

◼ Check the Contact all update sites during install to find required software check box in the Details section of this
dialog.

http://www.eclipse.org/cdt
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
https://www.cypress.com/products/psoc-creator-integrated-design-environment-ide

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 454

◼ Select the Add… button at the top of the dialog to open the Add Repository dialog.

◼ Click Archive… and browse to the location where you saved the Cypress-provided Eclipse plug-in zip file that
you downloaded above. Select the file and click Open; then click OK.

◼ Back on the Install dialog, select the check box next to "PSoC Creator Import Feature" and then click Next >.

◼ The next wizard page summarizes the features you are about to install. Click Next > and read and accept the
license for this feature.

◼ Click Finish to install the plug-in. There might be a warning about the software not being signed; click OK.

◼ Restart Eclipse when prompted.

In order to use the Segger J-Link debug probe, you must download the Segger J-Link toolset from
http://www.segger.com/jlink-software.html. You will need release 5.12 or later, which is required for PSoC 4000S
flash support.

Import into Eclipse

Create New Eclipse CDT Firmware Application Project

Create an Eclipse CDT executable project for your firmware. This must be created as a project rooted not in the
Eclipse workspace, but instead sharing the source code folder of your PSoC Creator design.

Note When you start Eclipse, you will create a new workspace or select an existing one. You must choose one that
does not include the folder where your PSoC Creator design is located. This is an Eclipse limitation.

Create a project via the File > New > C Project menu entry.

On the wizard's C Project page:

◼ Type a Project name.

◼ Unselect the Use default location check box, browse to and select your PSoC Creator project's top-level
folder (the one ending in .cydsn). This allows PSoC Creator and Eclipse to share the same source files.

◼ Under Project Type > Others, select "PSoC Creator Project."

http://www.segger.com/jlink-software.html

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 455

◼ Under Toolchains, select "Cross GCC (for PSoC Creator)."

Note In Eclipse releases earlier than the Luna release, the Others category does not exist. The "PSoC Creator
Project" entry can be found in the Project Type list as shown.

Click Next to move to the Select Configurations wizard page. No changes are needed here. Click Next again.

On the Cross GCC Command wizard page:

◼ Prefix will have a default value of: arm-none-eabi-

◼ Set the path by navigating to the bin folder of your compiler's install directory, where you can find arm-none-
eabi-gcc.exe. This is typically found using the following path:

 <Arm_tools_install_path>/bin

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 456

(Look for arm-none-eabi-gcc.exe and not gcc.exe.)

Note You can use the Arm GCC installation included in PSoC Creator, if you have PSoC Creator installed.

◼ In PSoC Creator 3.1 and earlier, this is found at:

 <PSoC_Creator_install_path>/import/gnu_cs/arm/<version>/bin

◼ In PSoC Creator 3.2 and later, this is found at:

 <PSoC_Creator_install_path>/import/gnu/arm/<version>/bin

The newly created PSoC Creator project in Eclipse includes toolchain settings, accessible in the Project Explorer
pane.

Right-click the project name and select Properties > C/C++ Build > Settings.

Then select the Tool Settings tab.

These settings are driven by the project's PSoC device. Certain options will be different depending on whether the
project is for a PSoC 4 or PSoC 5LP device. (The pre-populated option settings are listed in the Project Build
Settings section at the end of this document in case you decide to change them and later want to restore these
values. These values are set by default; you typically do not need to modify them for your project.)

Note If you are using custom toolchain options, add those options manually to the tool setting in Eclipse. For
example, if you are using custom linker scripts in the project, modify the Linker Flags option as shown in the
following image:

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 457

Building with Cygwin/make Installed

As of this feature version v2.2, designs are imported with the project builder set to the Eclipse Internal Builder. This
means that you do not need the 'make' utility installed to build your design in Eclipse.

If you wish to use the 'make' utility, you will need to use the Eclipse External Builder. In this case, the Eclipse CDT
Builder assumes that the 'make' utility is in your PATH, typically obtained through a cygwin installation on your
machine. If using the Eclipse external builder, you'll need to have something like "C:\cygwin\bin" or C:\cygwin64\bin"
in your Windows PATH environment variable or in the Eclipse environment settings.

Without 'make', you need to adjust your project build settings to use the Eclipse internal builder instead.

Right-click the project name and select Properties > C/C++ Build.

Select the Builder Settings tab.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 458

Change the Builder type value to External builder. Click the OK button.

Note For more complex designs, Make files may be generated with absolute paths for files outside of the current
project. This can expose a bug in GNU Make versions later than 3.8.0 and earlier than 4.0. You may see an error
like: "Multiple targets. Stop.". The solution is to use the Eclipse Internal Builder, or to change your GNU Make
version to one that does not contain this bug.

Design Iteration between PSoC Creator and Eclipse

Users are directed to create their Eclipse project using their PSoC Creator design folder. Users simply need to
rebuild their design in PSoC Creator and run the IDE Export wizard again. The Cypress-provided plug-in detects
the build update to the PSoC Creator project and makes the corresponding change in the visible Eclipse project
files. A corresponding check and update is performed when Eclipse is started as well.

Note that this synchronization support is one-way: changes in PSoC Creator can be seen in Eclipse, but file
additions and deletions made in Eclipse will not be seen by PSoC Creator. This allows changes in the hardware
configuration made upstream in PSoC Creator to be seen downstream in Eclipse for continued firmware
development.

Change in Project Build Settings

Project build settings are not exported from PSoC Creator to Eclipse; any custom build settings that you add or
change in PSoC Creator must be similarly added/changed in Eclipse, following the export step. As a starting point,
the default build settings in PSoC Creator are also set as the default build settings on initial export of a project to
Eclipse. You can then change these build settings as needed inside Eclipse. These default build settings are listed
below for reference:

Under Cross GCC Compiler:

Under Includes, these project include paths are provided as default values:

".." (i.e., the project design folder)

"../Generated_Source/${GEN_ARCH}"

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 459

Under Optimization, this flag must be set:

-ffunction-sections

Under Miscellaneous, Other flags, these ARM-related flags default values are provided via the ${PROC_FLAGS}
variable setting:

For PSoC 5LP: -mcpu=cortex-m3 -mthumb

For PSoC 4: -mcpu=cortex-m0 -mthumb

For PSoC 4000S/PSoC 4100S/PSoC 4100S Plus/PSoC Analog Coprocessor: -mcpu=cortex-m0plus -mthumb

Under Miscellaneous, Other flags, these flags must be set:

-c -fmessage-length=0

Under Cross GCC Assembler:

Under Includes, these project include paths are provided as default values:

".." (i.e., the project design folder)

"../Generated_Source/${GEN_ARCH}"

Under General, Other flags, these ARM-related flags default values are provided via the ${PROC_FLAGS}
variable setting:

For PSoC 5LP: -mcpu=cortex-m3 -mthumb

For PSoC 4: -mcpu=cortex-m0 -mthumb

For PSoC 4000S/PSoC 4100S/PSoC 4100S Plus/PSoC Analog Coprocessor: -mcpu=cortex-m0plus -mthumb

Under Cross GCC Linker:

Under Libraries, Library Search Path, this library path is provided:

-L "../Generated_Source/${GEN_ARCH}"

Under Miscellaneous, Linker flags, these flag values are provided:

-T ../Generated_Source/${GEN_ARCH}/${LINKER_FILE} -specs=nano.specs

Under Miscellaneous, Linker flags, these ARM-related flags default values are provided via
the ${PROC_LINK_FLAGS} variable setting:

For PSoC 5LP: -mcpu=cortex-m3 -mthumb -mfix-cortex-m3-ldrd

For PSoC 4: -mcpu=cortex-m0 -mthumb

For PSoC 4000S/PSoC 4100S/PSoC 4100S Plus/PSoC Analog Coprocessor: -mcpu=cortex-m0plus -mthumb

Under Miscellaneous, Linker flags, this default value is provided: -Xlinker --gc-sections

Under Other Objects, the following object path must appear:

"${EXPORT_FOLDER_PATH}/${TOOL_NAME}/CyComponentLibrary.a"

The link step command line is structured so that "-Wl,--start-group" and "-Wl,--end-group" options

surround all input files and libraries, providing multiple linker passes to resolve cyclic references between libraries,
if needed.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 460

On the Build Steps tab:

The following default settings are provided:

Pre-build step should read:

 "../${EXPORT_FOLDER_PATH}/prebuild.bat"

Post-build step should read:

 "../${EXPORT_FOLDER_PATH}/postbuild.bat"
"${POSTBUILD_HEXFILE_PATH}/${ConfigName}/${ProjName}"

Build Customization

Project Customization

Compiler optimization settings – Other optimizations that might be useful in reducing your generated flash image
size include:

Under Cross GCC Compiler:

Under Optimizations, set Optimization level to Optimize for size (-Os)

Linker script changes – A default GCC linker script is located at:

For PSoC 5LP: Generated_Source/PSoC5/cm3gcc.ld

For PSoC 4: Generated_Source/PSoC4/cm0gcc.ld

For PSoC 4000S/PSoC 4100S/PSoC 4100S Plus/PSoC Analog Coprocessor:
Generated_Source/PSoC4/cm0plusgcc.ld

If you need to customize the link step for your executable image, do the following:

Copy the file from the above location to the top level folder of your Eclipse project. This will prevent any subsequent
builds in PSoC Creator from overwriting your changes to this file.

Edit your new copy of the file as needed.

Change the Build Settings linker flags (under Cross GCC Linker, Miscellaneous, Linker flags) to be:

For PSoC 5LP: -T ../cm3gcc.ld

For PSoC 4: -T ../cm0gcc.ld

For PSoC 4000S/PSoC 4100S/PSoC 4100S Plus/PSoC Analog Coprocessor: -T ../cm0plusgcc.ld

Build Customization

If your design requires specialized steps in order to build to completion (beyond the standard pre-build/assemble/
compile/link/post-build stages of the standard Eclipse CDT Managed Build System [MBS]), you may want to
consider managing your own build for the project. Perhaps the easiest way to do this is to turn off the MBS
automatic generation of Makefiles with every project build. You can then customize the already generated
Makefiles to complete your project build as needed.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 461

To turn off the automatic generation of Makefiles for your project, do the following:

In the Eclipse Project Explorer, right-click on your project name and select Properties…

Select C/C++ Build in the left hand pane

Uncheck the Generate Makefiles automatically check box.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 462

User Commands

PSoC Creator provides the ability to insert pre-build and post-build user commands during project builds. However,
these steps are not included in the files generated for integration into third-party IDEs. For Eclipse, you can edit
your project's settings (under the project's Properties > C/C++ Build > Settings) on the Build Steps tab. PSoC
Creator provides a call to our generated pre-build and post-build scripts where needed; you can add your own
commands, separating all commands with semicolons.

Flashing and Debugging in Eclipse

In order to use a J-Link or J-Trace debug probe, you will first need to download and install Segger's software and
documentation pack from their web site (https://www.segger.com/jlink-software.html). This package provides USB
drivers for their probes, several utilities, and a GDB server, which connects the Eclipse debugger to your Cypress
hardware.

Debug Flow within Eclipse

Follow these steps to flash and debug an imported PSoC Creator project in Eclipse/CDT using a Segger J-Link
probe.

1. Provide power to your PSoC hardware, then connect a J-Link debug probe to your PSoC hardware and host
machine. Run J-Link Commander.exe from the All Programs->SEGGER->J-Link ARM menu. This initializes the
J-Link probe and only needs to be done once following each J-Link probe connection. (Without this step, the J-
Link GDB Server cannot successfully connect to the target.) Verify the following before exiting the application:

□ Target device is set to your PSoC device.

□ Target interface is set to JTAG (PSoC 5LP only), or SWD (PSoC 4 or PSoC 5LP)

□ Type 'exit' at the tool's command prompt to exit the application.

2. In Eclipse, create a new Debug Launch configuration for your design. Use the menu selection Run > Debug
Configurations…

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 463

3. Create a new debug launch configuration by selecting the "GDB Hardware Debugging" category and clicking
the New button (circled in the following figure).

4. Enter the debug launch configuration settings as follows:

Main tab:

□ Provide path to the design's executable file produced by the project build. Navigate to the project's
Release or Debug folder to find it, or simply click the Search Project… button and select the
executable.

□ The debugger launcher should be set to "GDB (DSF) Hardware Debugging Launcher."

Note However, for the Eclipse Kepler release, it is suggested that users select the "Legacy GDB Hardware
Debugging Launcher." (This is found at the bottom of the Main tab, change using the "Select other..." link.)

Debugger tab:

□ Set the path to the GDB command by browsing to the GDB executable to use. Typically, this will be
named arm-none-eabi-gdb.exe, located in the same folder as the "Cross compiler path" setting
provided when importing into Eclipse.

□ "Use remote target" is checked

□ JTag device is set to "Generic TCP/IP"

□ Host name is "localhost" and port is "2331" (the default J-Link GDB server port).

Startup tab:

□ Reset and Delay set to 3 seconds

□ Halt is checked

□ Enter "monitor reset" in the Init command field:

□ Load Image and Load Symbols sections must have "Use project binary" selected.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 464

□ Runtime options: "Resume" box is checked

□ Press Apply and Close to save this debug launch configuration for later use.

5. Launch the Segger J-Link GDB server by running "J-Link GDB Server" via All Programs->SEGGER->J-Link
ARM menu. Verify the following are set:

□ Connection to J-Link is set to USB

□ Target interface is set to JTAG or SWD as needed.

□ Target device is set to the Cypress PSoC device you are using. Press the "…" button to browse the
supported devices. Select Cypress in the Manufacturers pull-down to list only Cypress devices. Select
your device family and press OK.

□ OK the main dialog window.

The server should connect to the target at this point and indicate it is waiting for a GDB connection, as shown in
figure below.

6. In Eclipse, set any needed breakpoints in your code. Run the Debug launch configuration you created in step 2
above by using the Run > Debug Configuration… menu selection to locate your debug launch configuration
from the ones under the GDB Hardware Debugging heading. Click the Debug button to start the debug
session. The GDB Server will display additional output when the Eclipse GDB session begins.

7. When your breakpoint is encountered, Eclipse will change to its debug perspective and halt. Normal Eclipse
debug functionality (breakpoint manipulation, examining/changing variables and memory, etc) is available at
this point.

Note If you experience problems with the PC not tracking as you would expect while stepping through code,
you may be able to correct this by turning off compiler optimization in your code while debugging, as follows:

8. Right-click the project name and select Properties > C/C++ Build.

9. Select Settings.

10. Select Cross GCC Compiler (PSoC Creator).

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 465

11. Select Optimization.

12. Change the optimization level to "None".

13. Rebuild your design and start debugging again.

Flashing PSoC 5LP Designs using the J-Link Probe

If you are exporting your design to Eclipse for a PSoC 5LP design, it is important that you understand the following
limitations. These limitations will be removed in a future release of the Segger J-Link flashloader for PSoC 5LP
devices.

◼ Before building and exporting a PSoC 5LP based design to Eclipse, go to your project's Design Wide
Resources System page and uncheck the "Store Configuration Data in ECC" check box. Storing configuration
data in ECC memory is the default setting for PSoC Creator projects, but must be changed for designs
exported to Eclipse in order for them to execute properly once flashed.

◼ Your design cannot use EEPROM memory with any initial values set from the PSoC Creator EEPROM Editor.
The Segger-provided PSoC 5LP flashloader does not yet program this memory space.

◼ Your design cannot use ECC memory, as the Segger-provided PSoC 5LP flashloader does not yet program this
memory space. Your project's Design-Wide Resources (DWR) System Editor settings should have the "Enable
Error Correcting Code (ECC)" box unchecked, as shown above.

◼ The Segger-provided PSoC 5LP flashloader does not yet program the NVL memory space. This means the
following settings, if changed in your design in PSoC Creator, must be programmed by building and
downloading your design first in PsoC Creator with a Cypress MiniProg3 probe. You can then export your
design to Eclipse and program via a J-Link probe:

□ DWR System setting for Enable Fast IMO During Startup

□ DWR System setting for Enable Device Protection

□ DWR System setting for Debug Select

□ DWR System setting for Use Optional XRES

□ Initial state settings on pins

Setting up a PSoC 4/PSoC 5LP IAR Project

After exporting the PSoC Creator project for use in the IAR IDE, you need to follow a set of steps to set up the
project. This is because IAR does not provide a means of exporting some of the important information needed to

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 466

set up the project, such as the linker file to use, tool chain command line settings, or a way to add third party
libraries to the project's linker additional library list.

The steps to use are as follows:

1. Export your PSoC Creator project to IAR using the Export Wizard.

Note If you do not have IAR installed, PSoC Creator performs the export with the assumption that IAR version
7.10.3 will be used to create an IAR project, based on the exported design. If IAR is installed, PSoC Creator will
use that version of IAR.

2. Launch IAR Embedded Workbench for ARM (EWARM).

3. Create a new Empty project (Project > Create New Project), and save the project in the .cydsn directory of
your exported PSoC Creator project.

4. Open the IDE Options dialog (Tools > Options) and select Project. Then, select the Enable project
connections option and click OK.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 467

5. Open the Add Project Connection dialog (Project > Add Project Connection), select IAR Project
Connection, and click OK.

6. On the Select IAR Project Connection File dialog, browse to the PSoC Creator Export directory, select the .ipcf
file, and click Open.

7. In the EWARM Workspace window, right-click on the project and select Options... to open the Options dialog.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 468

8. For IAR versions earlier than 7.10.1 only, do the following:

◼ On the General Options page, select Device under Processor variant. Then, click the Select Device button
and select the appropriate Cypress device.

◼ On the Linker page, select the Config tab, check the Override default for the Linker configuration file.
Navigate to your project directory and go to the Generated_Source/{ARCH} directory and find the .icf file for
your project:

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 469

◼ If there exists any additional library file such as CyComponentLibrary.a under the
<project_name>.cydsn\Export\ARM_IAR_Generic directory, then on the Linker page, select the Library tab
and add the path to each of the libraries found in the Export\ARM_IAR_Generic directory.

Prepend each of them with the IAR command $PROJ_DIR$, to let IAR find them in the project directory.

This ensures that your program will link with the correct libraries for your device. For example:

 $PROJ_DIR$\Export\ARM_IAR_Generic\CyComponentLibrary.a

9. For all IAR versions, do the following:

□ On the Debugger page, click the Driver drop-down menu and select the appropriate debugger probe
(I-jet and J-Link are currently supported).

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 470

□ On the Debugger page, select the Download tab and check the Use flash loader(s) option.

□ Select the node for your debugger and select to the JTAG/SWD tab. Then, select the appropriate
interface for your device.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 471

□ On the Build Actions page, enter appropriate pre-build and post-build commands.

PSoC Creator provides the ability to insert pre-build and post-build user commands during project
builds. However, these steps are not included in the files generated for integration into third-party IDEs.
For IAR, add these commands to the projects options. PSoC Creator provides a call to our generated
pre-build and post-build scripts where needed; you can add your own commands, separating all
commands with semicolons.

10. Click OK to close the Options dialog.

You can now build, program and debug your EWARM project. Refer to the IAR documentation as needed.

Note For multi-core projects, you need to build the projects for each core in the ascending order from the lower
core number to the higher. For example, if you have two projects based on CortexM0p and CortexM4, first build the
CortexM0p project then build the CortexM4 project.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 472

Setup for I-jet Programming and Debugging:

For PSoC 5 LP, connect the I-jet with 10-pin adapter to the PROG 10-pin connection on the PSoC 5 LP module of
your CY8CKIT-001 kit.

Note If the PSoC 5 LP User NVLs are configured such that the device is using the JTAG programming/debugging
protocol, the IAR i-Jet configuration must match this.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 473

For PSoC 4/PRoC BLE, connect the I-jet with 10-pin adapter to the "PSoC 4/PRoC BLE Prog" 10-pin connector on
the CY8CKIT-042 (Pioneer Kit).

For information about how to use the IAR I-jet/Debugger system, go to the IAR IDE. In the Help menu, open the
documents named C-SPY Debugging Guide and I-jet User Guide.

See Also:

◼ Exporting a Design to 3rd Party IDE

◼ Exporting a Design to IAR IDE

Opening PSoC 4/PSoC 5LP Projects in µVision IDE

As described in Key IDE Export Files/Projects, the export process creates a µVision application project along with
several files.

Note The default toolchain (GCC or MDK) of the exported project is the one that was used to build the project in
PSoC Creator just before exporting to µVision.

Note if using µVision 5 or later, download and install the µVision 5 legacy support executable from Keil website:

http://www2.keil.com/mdk5/legacy

For more information and help with installation, refer to:

http://www.keil.com/support/man/docs/license/license_sul_install.htm

http://www2.keil.com/mdk5/legacy
http://www.keil.com/support/man/docs/license/license_sul_install.htm

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 474

The following is a snapshot of the exported project opened and built in µVision.

Debug and Release Builds

In PSoC Creator, there are two configurations in which the build can be performed: debug and release. A debug
build is used for debugging purposes and the release build is for release to customers. The prime difference
between the two is in the build options used.

In µVision, this is handled by creating two targets: one for “Debug" and another for “Release." µVision provides a
drop down menu to switch between targets.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 475

Setting Options in µVision

The following is a snapshot of the application project in µVision specifying the post build command.

Note PSoC 4/PSoC 5LP exports provide only bare-bones options. After an export for all devices, the user is fully
responsible for settings.

Note PSoC Creator provides the ability to insert pre-build and post-build user commands during project builds.
However, these steps are not included in the files generated for integration into third-party IDEs. You can add these
commands on the User tab. PSoC Creator provides a call to generated pre-build and post-build scripts where
needed. You can add your own commands in the unused entry fields on this tab.

See Also:

◼ Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE

◼ Key IDE Export Files/Projects

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 476

Opening Generated CMSIS-Pack Projects (µVision 5 IDE)

As described in Key IDE Export Files/Projects, the export process creates several µVision files. You can open the
project directly from the PSoC Creator wizard, or open the project from the µVision 5 IDE.

Note For PSoC 6 designs, you must create a µVision project per core. For more information, see Creating uVision
Projects for PSoC 6.

To make sure you are using the correct pack for your project, open the Manage Run-Time Environment dialog and
click the Select Packs button.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 477

On the Select Software Packs for Target dialog:

◼ Unselect the Use latest versions of all installed Software Packs check box.

◼ Under the Selection column, select "fixed" from the drop down menu for the CMSIS Pack that PSoC Creator
created for your configured device. All other unused packs should be excluded.

Click OK.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 478

Now you should see the software Components CMSIS Core and Device Startup for your device are selected in
Manage Run-Time Environment.

Click OK to close Manage Run-Time Environment dialog, and save project settings.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 479

The following is a snapshot of a project exported to µVision 5.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 480

The following is a snapshot of the project built in µVision 5, but before building the project there are some options
that need to be set up as explained in the section Setting Options in µVision 5.

Debug and Release Builds

In PSoC Creator, there are two configurations in which the build can be performed: debug and release. A debug
build is used for debugging purposes and the release build is for release to customers. The prime difference
between the two is in the build options used.

In µVision, this is handled by creating two targets: one for “Debug" and another for “Release." µVision provides a
drop down menu to switch between targets.

Setting Options in µVision 5

Note PSoC 4/PSoC 5LP exports provide only bare-bones options. After an export for all devices, the user is fully
responsible for settings.

Open the Options for Target ... dialog for the µVision 5 project.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 481

Scatter File

Select the Linker tab and unselect the Use Memory Layout from Target Dialog check box.

Navigate to the scatter file located in the pack installation directory. The path should be similar to the following:

C:\Keil_v5\ARM\Pack\<pack vendor name>\<pack name>\<pack
version>\Device\<deviceName_packName>\Source\

Depending on the selected toolchain, choose the corresponding scatter file:

◼ For CortexM0, choose Cm0RealView.scat

◼ For CortexM0+, choose Cm0plusRealView.scat

◼ For CortexM3, choose Cm3RealView.scat

Pre-Build/Post-Build Script

On the Options for Target ... dialog, select the User tab to add/check the following script to the After Build/Rebuild
text field and check the Run #1 check box.

$PExport\postbuild.bat "#L" -p "$P"

For "Bootloadable" and "Bootloader and Bootloadable" projects, add/check the following script to the Before
Build/Rebuild text field and check the Run #1 check box.

$PExport\prebuild.bat

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 482

Note Adding the pre-build/post-build commands will be done automatically for some newer versions of µVision, so
you need to check it depending on what version of µVision you are using.

See Also:

◼ Exporting a Design to Generated CMSIS-Pack

◼ Key IDE Export Files/Projects

Opening PSoC Creator Designs in Makefile

Generated Files:

After completion of "Export to Makefile", the following files will be generated:

File Notes

Makefile
Top-level GNU Make compatible Makefile.

This file may be updated or altered as desired.

platform_debug.mk

- or -

platform_release.mk

Platform and toolchain specific configuration. The Export to Makefile feature will generate

platform_debug.mak if Creator is configured to create debug builds, and platform_release.mak if

Creator is configured to create release builds.

These files may be updated or altered as desired.

app_source.mk
Application firmware source.

This file may be updated or altered as desired.

gen_source.mk

PSoC Creator generated source code.

This file should NOT be modified. It is automatically re-written by PSoC Creator as a part of the build

process.

This file is written out for the toolchain selected in the export wizard. Later, it will be updated during

each Build process, based on the current toolchain in the Build Settings. That is, if you export to

Makefile and change from GCC to MDK, the Makefiles will likely not work. The gen_source.mk file will

contain source code that is not supported by the toolchain in platform_debug.mk (or

platform_release.mk). Either update the platform configuration file, or use the "Export to Makefile"

feature to regenerate the files for the new toolchain.

Important Notes:

◼ Since the Make utility does not reliably support files with spaces or $ in the file name, PSoC Creator avoids
using them. Also, the tool avoids using colons and slashes in the names of files and folders because some
operating systems and drive formats use these characters as volume and directory separators. Furthermore,
non-alphanumeric characters may not be supported by all file systems or operating systems. Punctuation
marks, parentheses, quotation marks, brackets, and operators, such as following, are often reserved for special
functions in scripting and programming languages:

 , [] { } () ! ; " ' * ? < > |

Therefore, PSoC Creator checks the design project name and user source files for white spaces and those
special characters in their names. PSoC Creator performs the check in the last page of the wizard and the error
message specifies the affected files. In this situation you need to address the errors and try to re-export the
design.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 483

◼ The Makefile uses BASH scripts (prebuild.sh and postbuild.sh) by default. If you would like to use BATCH
scripts, you need to modify the Makefile appropriately.

◼ If you are using Windows, you need CYGWIN (Make package) or MSYS installed in your machine. Cypress
has tested this feature on CYGWIN_NT-6.3-WOW64 1.7.33-2(0.280/5/3) i686 cygwin (Make 4.0), and
MinGW32_NT-6.1 1.0.18(0.48/3/2) 2012-11-21 i686 Msys (Msys 2013072300).

◼ If you would like to use another toolchain rather than the one used during the Export, you can modify the
platform_debug.mk/platform_release.mk file to remove the text in front of the TOOLCHAIN_DIR variable and
write the path to the target toolchain instead. Be sure to change back slashes to forward slashes in the path.

◼ You need to install ARM GCC on Linux OS. It can be downloaded from: https://launchpad.net/gcc-arm-
embedded/

◼ The additional library files to link, which you added to your design through the build settings dialog (that is, by
using the linkers -L and -l arguments), will be populated as linker options in the
platform_debug.mk/platform_release.mk file. You may add more library files to the APP_LIBS section in the
app_source.mk file.

◼ If you generate a makefile, but then make significant changes to your design (for example, changing the
selected toolchain) and regenerate a new makefile, you must run "make clean" before running "make" to
ensure your make-based build is properly up to date.

◼ PSoC Creator provides the ability to insert pre-build and post-build user commands during project builds.
However, these steps are not included in the files generated for integration into third-party IDEs. For generated
makefiles, you can add these commands to the top-level makefile, as part of the prebuild_* and postbuild_*
rules.

◼ PSoC Creator only propagates project-level Build Settings, such as compiler optimization level. The export
process does not support propagation of file-level Build Settings to the makefile.

See Also:

◼ Exporting a Design to Makefile

https://launchpad.net/gcc-arm-embedded/
https://launchpad.net/gcc-arm-embedded/

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 484

Setting Up for Segger J-Link/J-Trace Debugger for PSoC 5LP

Use the following steps to set up the Segger J-Link in µVision for programming and debugging PSoC 5LP Device
Family. For PSoC 4 and PRoC BLE, refer to Setting Up for ULink2/ULink Pro and Segger J-Link Debugger Probes.

1. Before building and exporting a PSoC 5LP based design to µVision, go to your project's Design Wide
Resources System Editor page and disable the "Store Configuration Data in ECC" parameter. Storing
configuration data in ECC memory is the default setting for PSoC Creator projects. It must be changed for
designs exported to µVision.

2. Launch the µVision IDE and select Project > Options for Target to open the dialog, and go to the Debug tab

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 485

3. Select the appropriate debugger and click Settings to open the Driver Setup dialog.

Note Please notice that for µVision 5 exported projects, the target name is not automatically recognized by J-
Link SW and you will get a message indicating that the selected device is unknown, so you need to select Yes
from the pop up window and then manually choose the appropriate device in the J-Link SW.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 486

4. On the Debug tab, select the appropriate Port (SW or JTAG). Then, click the Flash Download tab.

5. Remove all other flash algorithms except CY8C5xxLP Flash. If you have flash algorithms of other memory
types such as EERPOM, CFG, NVLs, etc. in HEX then J-Link loader will fail, because it doesn't support them.

6. If CY8C5xxLP isn't listed under Programming Algorithm, click Add.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 487

Notes:

For projects exported through µVision: The Programming Algorithm should be present in C:\Keil\ARM\flash*.FLM. If
µVision doesn’t contain a Cypress flashloader, copy flashloaders from PSoC Programmer folder (C:\Program Files
(x86)\Cypress\Programmer\ 3rd_Party_Configuration_Files).

For projects exported through Generated CMSIS-Pack: The Programming Algorithm should be present in a path
similar to the following based on µVision 5 installation directory and your chosen pack name information:

C:\Keil_v5\ARM\PACK\<PackVendor>\<PackName>\<PackVersion>\FLM\<CypressDeviceName>*.FLM

Setting Up for ULink2/ULink Pro and Segger J-Link Debugger Probes

These steps are for users of the ULink2/ULink Pro and Segger J-Link debugger probes. These instructions apply as
follows:

◼ ULink2/ULink Pro is for PSoC 4, PRoC BLE, and PSoC 5LP devices.

◼ Segger J-Link is for PSoC 4 and PRoC BLE devices. To set up Segger J-Link for PSoC 5LP devices, refer to
Setting Up for Segger J-Link/J-Trace Debugger for PSoC 5LP.

In order to fully enable PSoC 4/PRoC BLE/PSoC 5LP programming/debugging in µVision 4.72a you will need to
download an "add-on" for µVision.

Note If you are using a version later than 4.72a, you do not need this download.

The add-on can be found at the following link: http://www.cypress.com/go/creator/uvisionimportdownload

Once you have downloaded the add-on, unzip the archive and run the executable and follow the steps to install it.

Then, run µVision and follow these steps to set it up:

1. Before building and exporting a PSoC 5LP based design to µVision, go to your project's Design Wide
Resources System page and Disable the "Store Configuration Data in ECC" parameter. Storing configuration
data in ECC memory is the default setting for PSoC Creator projects, but must be changed for designs
exported to µVision.

http://www.cypress.com/go/creator/uvisionimportdownload

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 488

2. Select Project > Options for Target to open the dialog, and go to the Debug tab.

3. Select the appropriate debugger and click on Settings.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 489

4. Select the appropriate Port (SW or JTAG), and click on the Flash Download tab.

5. Select Erase Full Chip and if the flash algorithms have not been added automatically, Click the Add button
and add the proper On-chip Flash algorithm based on the following table. Then set the size of RAM for
Algorithm as indicated in the following table.

“RAM for Algorithm” values for Keil ULink (PSoC 4/PRoC BLE/PSoC 5LP) and Segger J-Link
(PSoC 4/PRoC BLE) debuggers

PSoC Device family
RAM for Algorithm

Programming Algorithm *
Start Size

PSoC 4000 0x20000200 0x0600
CY8C40xx

(16/8kB) Flash

PSoC 4000S/PSoC 4700S 0x20000200 0x0600
CY8C44xx

(32/16kB) Flash

PSoC 4100/PSoC 4200 0x20000300 0x0D00
CY8C42xx 1 MACRO

(32/16kB) Flash

PSoC 4100 BLE/
PSoC 4200 BLE, PRoC BLE

0x20000200 0x3E00
CY8C42xx/41xx-BLE, CYBL10xx

(128kB) Flash

PSoC 4100 BLE/
PSoC 4200 BLE, PRoC BLE

0x20000400 0x7C00
CY8C42xx/41xx-BLE, CYBL10xx

(256kB) Flash

PSoC 4100M/PSoC 4200M/
SHM35x2M

0x20000200 0x0C00
CY8C42xx/41xx-M

(128/64/32kB) Flash

PSoC 4200L/SHM35x2L 0x20000400 0x1C00
CY8C42xx-L

(256/128/64kB) Flash

PSoC 4100S / PSoC 4000DS /
PSoC 4200DS

0x20000200 0x1E00
CY8C42xx-D

(64/32/16kB) Flash

PSoC 4100S Plus 0x20000300 0x1D00
CY8C41xx-S3_128, CY8C41xx-S3_64

(128/64kB) Flash

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 490

PSoC Device family
RAM for Algorithm

Programming Algorithm *
Start Size

PSoC Analog Coprocessor /

PSoC 4100PS
0x20000200 0x0E00

CY8C44xx / CY8C4A5xxx

(32/16kB) Flash

PSoC 4500 0x20000400 0x7C00
CY8C45xx

(256/128/64kB) Flash

PSoC 5LP/SHM35x3L 0x20000400 0x0C00

CY8C5xxxx Flash

CY8C5xxxx Configuration

CY8C5xxxx CFG NVL

CY8C5xxxx WO NVL

CY8C5xxxx EEPROM

CY8C5xxxx Flash Protection

Notes:

For projects exported through µVision : The Programming Algorithm should be present in
C:\Keil\ARM\flash*.FLM. If µVision doesn’t contain a Cypress flashloader, copy flashloaders from PSoC
Programmer folder (C:\Program Files (x86)\Cypress\Programmer\ 3rd_Party_Configuration_Files).

For projects exported through Generated CMSIS-Pack: The Programming Algorithm should be present in a path
similar to the following based on µVision installation directory and your chosen pack name information:

C:\Keil_v5\ARM\PACK\<PackVendor>\<PackName>\<PackVersion>\FLM\<CypressDeviceName>*.FLM

For more information about how to set up your project; please refer to the “Third-Party Tools for Cypress Devices
User Guide.pdf” file in “Documents” folder in the ‘3rd_Party_Configuration_Files’ folder located in the root
installation folder of PSoC Programmer.

PSoC 3 Designs

This section contains the following topics:

◼ Exporting a PSoC 3 Design to Keil µVision IDE

◼ Updating PSoC 3 Projects for µVision IDE Export

◼ Opening PSoC 3 Projects in µVision IDE

Exporting a PSoC 3 Design to Keil µVision IDE

PSoC Creator supports multiple PSoC devices as well as multiple versions of the Keil µVision IDE. This topic
applies to PSoC 3 devices only.

◼ PSoC 3 device projects can be exported to either µVision 4 or µVision 5 IDEs.

◼ The export to µVision IDE process is slightly different for PSoC 3 devices than it is for PSoC 4 and PSoC 5LP
devices. See Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 491

◼ The Export to Generated CMSIS-Pack option applies only to PSoC 4 and PSoC 5LP devices, and it applies
only to the µVision 5 IDE. See Exporting a Design to Generated CMSIS-Pack.

Note The Export to IDE wizard does not apply to PSoC 6 devices. For PSoC 6 devices, use the Target IDEs section
of the Build Settings dialog to choose third party IDEs for which to generate files.

Use PSoC Creator to develop a PSoC hardware design. Then use either PSoC Creator or Keil's µVision IDE for
firmware development. To use the µVision IDE, you must build the design in PSoC Creator and then use the Export
to IDE feature.

Note PSoC Creator supports the Advanced System Viewer in Keil µVision. Ensure that you have the appropriate
version of µVision to support CMSIS-SVD.

Note When building a project in µVision, all output is written into the UV4Build directory found in your project
directory.

For PSoC 3, the build and export process creates a two-project approach in µVision: a library project that contains
the design APIs and source files, plus an application project that contains the startup file and firmware template file.

The following diagram shows the high-level workflow for creating a new PSoC Creator design and using the export
process to generate projects and files for µVision. It also shows the workflows for updating a PSoC Creator design.
See Key IDE Export Files/Projects for more information about the projects and files.

Each of these flows is described in the following sections:

◼ Exporting a New PSoC Creator Design

◼ Updating a PSoC Creator Design

◼ Changing a PSoC Device

Note Creating and exporting a PSoC 3 project and then changing the device to a PSoC 4/PRoC BLE/PSoC 5LP
and re-exporting is not supported. If you wish to do this, you must manually delete your µVision project (*.uvproj)
before re-exporting. Then follow instructions for Exporting a Design to Keil µVision IDE (PSoC 4/PRoC BLE/PSoC
5LP).

Exporting a New PSoC Creator Design:

The initial flow is to create a design in PSoC Creator and export the design to the µVision IDE.

1. Create your design in PSoC Creator in the usual manner.

Note If there are any spaces in the project name, the exported project cannot be built in µVision.

Note If you want to program the device using JTAG in your desired 3rd party IDE, you must set the Select
Debug option to JTAG in PSoC Creator System Editor.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 492

2. Open the Build Settings dialog and select the appropriate toolchain for your project. See PSoC Creator
Toolchain Settings for more information.

3. Use the Project > Export to IDE menu option to open the IDE Export Wizard dialog.

Note PSoC Creator does not support PSoC 3-based bootloader/bootloadable application development in
µVision.

4. If you have not built the design, you will be prompted to build at this time.

5. Click Yes to build. If you click No, the export process will be cancelled.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 493

After a successful build, the IDE Export Wizard opens.

6. If not already selected, select the µVision option. Click Next > to continue.

PSoC Creator checks whether MiniProg3/KitProg drivers have been registered with µVision. If they are not
registered, the MiniProg3/KitProg support for µVision step opens. However, if PSoC Creator locates a µVision
installation with MiniProg3/KitProg support enabled, then it will skip this step. Go to step 7.

Note PSoC Creator only examines the first µVision installation found to see if it has MiniProg3/KitProg drivers
properly registered. If you have multiple copies of µVision installed on your computer, the auto-detection
process may not be accurate. If you are sure you already have drivers registered, you may skip this step of the
wizard.

7. If you need to register the drivers, click Install Drivers for µVision and follow the prompts on the installation
wizard. This process is only required once. See Registering MiniProg3/KitProg Drivers for more information.

8. If you need to register drivers with another µVision installation, go to the PSoC Creator Tools menu and select
Install drivers for µVision to launch the installation wizard.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 494

9. When complete with this step, click Next > to continue.

The Export Project step opens.

10. Select the Create a new µVision application option.

Use this option when exporting the design for the first time to generate a new µVision application project. If you
want to update a previously exported design, see Updating µVision Projects.

□ Optionally, modify the name for the µVision workspace and project. By default, these are based on the
names of the PSoC Creator project being exported.

□ The location needs to be the <Project_Name>.cydsn directory.

Note The wizard will not overwrite an existing project or workspace file. If you want to replace an existing
µVision project, you must delete it using Windows Explorer first.

11. Click Next > to continue.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 495

The Application Files step opens.

□ Select the files you want added to your new µVision application project.

Note The wizard does not copy these files when exporting. It simply adds references to the existing
files to the µVision application project.

□ To start with an empty µVision application project, click the Unselect All button.

□ Once the initial export is complete, build settings and file management must be performed within the
µVision environment. For example, if you want to add a new source file, select File > New in µVision.

12. Click Next > to continue.

The Review export details step opens.

13. Review the export details and click Export.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 496

The final step opens showing the completed export.

Optionally select the following action(s) when the export process completes:

□ Open the project in µVision.

Note If you have multiple versions of µVision IDE installed (for example version 4 and version 5), this
option will launch the version you installed most recently. If version 4 does not launch, close
the µVision IDE, and launch version 4 manually.

□ Open µVision Export documentation.

□ Open the folder containing the project files.

14. Click Finish to close the wizard.

See Also:

◼ Key IDE Export Files/Projects

◼ Opening Projects in µVision IDE

◼ Updating µVision Projects

◼ Flash Programming/Debugging using µVision

◼ PSoC Creator Toolchain Settings

◼ Registering MiniProg3/KitProg Drivers

◼ Miscellaneous Export Notes

Updating PSoC 3 Projects for µVision IDE Export

This section is for PSoC 3 only. For PSoC 4/PRoC BLE and PSoC 5LP, any changes to your design, other than
code changes, require a re-export.

In most cases, when you update your design in PSoC Creator, such as adding a Component or configuring a pin,
you only need to rebuild your design in PSoC Creator. The list of files in the µVision library project is automatically

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 497

updated. Simply rebuild the library project in µVision to gain access to the new Component APIs. However, if you
select a different PSoC device in PSoC Creator, then you have to re-export the design to update the µVision
application project.

Library Project Updates (Change PSoC Creator Design):

To update the library project:

1. Make the necessary changes in PSoC Creator, such as add a pin to your design.

2. Save and build the design in PSoC Creator to generate an updated µVision library project.

3. Open the library project in µVision and rebuild it.

4. In most cases, you do not have to re-export the application project.

What Gets Updated:

◼ Device name (same as application project)

◼ CPU information (same as application project)

◼ Output file name (<OutputName> key)

◼ Create library and create executable (<CreateLib> and <CreateExecutable> keys)

◼ SRAM/flash start address and size just like application project

◼ List of files in the 'Source Files' group in the project file

Application Project Updates (Change PSoC Device):

If you have previously exported the design, and then change the PSoC device in PSoC Creator, the µVision output
window will contain an error message indicating the precise problem. Use the IDE Export Wizard to update the key
device information in order to clear the error.

Note The µVision IDE does not allow post-build script to report errors. You will have to manually inspect the text of
the output window to identify these errors.

To update the application project:

1. Save and build the design in PSoC Creator.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 498

2. Then use the Project > Export to IDE menu option to open the IDE Export Wizard dialog.

3. If not already selected, select the µVision option. Click Next > to continue.

The Export Project step opens.

4. Choose the Update device settings... option, and navigate to where the application project is stored.

This option will update the necessary application-level files, but it will not update any firmware files.

Note If you have the application project open in the µVision IDE, Cypress recommends that you close it before
re-exporting from PSoC Creator.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 499

5. Click Next >. The wizard shows the changes that were made to the application project.

You can select the option to open the documentation and/or the containing folder.

6. Click Finish to complete the export process from PSoC Creator. Then re-open the project in µVision and
rebuild it

Note The Update device settings... option only modifies the Application project. No other files mentioned in
Key IDE Export Files/Projects will be changed.

What Gets Updated:

◼ Device name (the <Device> key in the project file)

◼ CPU information (the <Cpu> key in the project file)

◼ Flash start address (the <StartAddress> key in the <OnChipMemories><IRO> section)

◼ Flash size (the <Size> key in the <OnChipMemories><IRO> section)

◼ SRAM start address (the <StartAddress> key in the <OnChipMemories><Ocr1> section)

◼ SRAM size (the <Size> key in the <OnChipMemories><Ocr1> section)

◼ all Include path entries that point to the PSoC Creator Generated_Source directory (all <IncludePath> keys)

See Also:

◼ Exporting a PSoC 3 Design to Keil µVision IDE

◼ Files/Projects Exported

Opening PSoC 3 Projects in µVision IDE

As described in Key IDE Export Files/Projects, the export process creates several µVision files and projects. You
can open the library project and application project separately, or you can open the multi-project workspace that
contains both the library and application projects.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 500

Note if using µVision 5 or later, download and install the µVision 5 legacy support executable from Keil website:

http://www2.keil.com/mdk5/legacy

For more information and help with installation, refer to:

http://www.keil.com/support/man/docs/license/license_sul_install.htm

Note The library project must be up to date in order to build the application successfully. If the application project
fails to build because it cannot find the library it is likely because that project needs to be built in µVision. Open the
library project or use the batch build option from the multi-project workspace to correct this situation.

The following is a snapshot of the library project opened and built in µVision.

http://www2.keil.com/mdk5/legacy
http://www.keil.com/support/man/docs/license/license_sul_install.htm

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 501

The following is a snapshot of the application project opened and built in µVision.

Both of these projects can be opened together in a µVision workspace <ProjectName.uvmpw>. Both projects can
be built together using Project > Batch Build as shown in the following image.

Debug and Release Builds

In PSoC Creator, there are two configurations in which the build can be performed: debug and release. A debug
build is used for debugging purposes and the release build is for release to customers. The prime difference
between the two is in the build options used.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 502

In µVision, this is handled by creating two targets: one for “Debug" and another for “Release." µVision provides a
drop down menu to switch between targets.

Setting Options in µVision

The following is a snapshot of the application project in µVision specifying the post build command.

Note After an export for all devices, the user is fully responsible for settings.

See Also:

◼ Exporting a PSoC 3 Design to Keil µVision IDE

◼ Key IDE Export Files/Projects

FM0+ Designs

This section contains the following topics:

◼ Exporting a FM0+ Design to Makefile

◼ Opening FM0+ Designs in Makefile

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 503

Exporting a FM0+ Design to Makefile

The GNU Make is a utility that uses a Makefile to automatically determine which pieces of a large program need to
be recompiled, and then issues commands to recompile those pieces. The Makefile tells the Make utility what to do
and how to compile and link a program. Most IDEs support a simple Makefile-based build option. The PSoC
Creator Export to Makefile feature allows you to build PSoC designs in those IDEs, as well as from the command-
line.

Note For PSoC 6 devices, use the Target IDEs section of the Build Settings dialog, and enable the Makefile option.

To Export to Makefile:

To export your PSoC Creator design to a Makefile, select the "Makefile" option on the IDE Export Wizard dialog and
click Next >.

Note If you previously used this feature, PSoC Creator will re-create and overwrite the Makefile and .mk files, but
will prompt you to confirm the action.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 504

The Application Files step opens.

Select which non-generated code to export to the project.

Note Only the files that are compatible with the selected toolchain will appear in the dialog. The wizard adds
references to the selected files to app_source.mk.

Click Next > to continue.

The Review export details step opens.

Review the export details and click Export.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 505

The final step opens showing the completed export.

Click Finish to close the wizard.

Opening FM0+ Designs in Makefile

Generated Files:

After completion of "Export to Makefile", the following files will be generated:

File Notes

Makefile
Top-level GNU Make compatible Makefile.

This file may be updated or altered as desired.

platform_debug.mk

- or -

platform_release.mk

Platform and toolchain specific configuration. The Export to Makefile feature will generate

platform_debug.mak if Creator is configured to create debug builds, and platform_release.mak if

Creator is configured to create release builds.

These files may be updated or altered as desired.

app_source.mk
Application firmware source.

This file may be updated or altered as desired.

gen_source.mk

PSoC Creator generated source code.

This file should NOT be modified. It is automatically re-written by PSoC Creator as a part of the build

process.

This file is written out for the toolchain selected in the export wizard. Later, it will be updated during

each Build process, based on the current toolchain in the Build Settings. That is, if you export to

Makefile and change from GCC to MDK, the Makefiles will likely not work. The gen_source.mk file will

contain source code that is not supported by the toolchain in platform_debug.mk (or

platform_release.mk). Either update the platform configuration file, or use the "Export to Makefile"

feature to regenerate the files for the new toolchain.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 506

Important Notes:

◼ Since the Make utility does not reliably support files with spaces or $ in the file name, PSoC Creator avoids
using them. Also, the tool avoids using colons and slashes in the names of files and folders because some
operating systems and drive formats use these characters as volume and directory separators. Furthermore,
non-alphanumeric characters may not be supported by all file systems or operating systems. Punctuation
marks, parentheses, quotation marks, brackets, and operators, such as following, are often reserved for special
functions in scripting and programming languages:

 , [] { } () ! ; " ' * ? < > |

Therefore, PSoC Creator checks the design project name and user source files for white spaces and those
special characters in their names. PSoC Creator performs the check in the last page of the wizard and the error
message specifies the affected files. In this situation you need to address the errors and try to re-export the
design.

◼ The Makefile uses BASH scripts (prebuild.sh and postbuild.sh) by default. If you would like to use BATCH
scripts, you need to modify the Makefile appropriately.

◼ If you are using Windows, you need CYGWIN (Make package) or MSYS installed in your machine. Cypress
has tested this feature on CYGWIN_NT-6.3-WOW64 1.7.33-2(0.280/5/3) i686 cygwin (Make 4.0), and
MinGW32_NT-6.1 1.0.18(0.48/3/2) 2012-11-21 i686 Msys (Msys 2013072300).

◼ If you would like to use another toolchain rather than the one used during the Export, you can modify the
platform_debug.mk/platform_release.mk file to remove the text in front of the TOOLCHAIN_DIR variable and
write the path to the target toolchain instead. Be sure to change back slashes to forward slashes in the path.

◼ You need to install ARM GCC on Linux OS. It can be downloaded from: https://launchpad.net/gcc-arm-
embedded/

◼ The additional library files to link, which you added to your design through the build settings dialog (that is, by
using the linkers -L and -l arguments), will be populated as linker options in the
platform_debug.mk/platform_release.mk file. You may add more library files to the APP_LIBS section in the
app_source.mk file.

◼ If you generate a makefile, but then make significant changes to your design (for example, changing the
selected toolchain) and regenerate a new makefile, you must run "make clean" before running "make" to
ensure your make-based build is properly up to date.

◼ PSoC Creator provides the ability to insert pre-build and post-build user commands during project builds.
However, these steps are not included in the files generated for integration into third-party IDEs. For generated
makefiles, you can add these commands to the top-level makefile, as part of the prebuild_* and postbuild_*
rules.

◼ PSoC Creator only propagates project-level Build Settings, such as compiler optimization level. The export
process does not support propagation of file-level Build Settings to the makefile.

See Also:

◼ Exporting a FM0+ Design to Makefile

https://launchpad.net/gcc-arm-embedded/
https://launchpad.net/gcc-arm-embedded/

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 507

Keil µVision IDE Notes

Notes

There are also various general topics about µVision to be aware of, including:

◼ Key IDE Export Files/Projects

◼ GCC Settings in µVision

◼ PSoC Creator Toolchain Settings

◼ Registering MiniProg3/KitProg Drivers

◼ Flash Programming/Debugging using MiniProg3

◼ Miscellaneous Export Notes

Key IDE Export Files/Projects

The Export to IDE feature generates several important files. These include:

Path/File Name Purpose Details

<DesignName>.cydsn/
<DesignName>_<Arch>lib.uvproj

(For PSoC 3 only)

µVision library project. This is a
static library file that enables access
to PSoC Creator Component APIs.

▪ Corresponds to the contents of the
“Generated Source” folder in the PSoC
Creator design project.

▪ Created in the same directory as the
corresponding PSoC Creator design project.
It cannot be moved or renamed.

▪ Created, if needed, by the PSoC Creator
build process. When creating this file, build
settings are copied from PSoC Creator.

▪ If this file already exists, the PSoC Creator
build process will update the list of files, but
will not touch any other setting. This ensures
that firmware developers get updated
Component APIs as the PSoC design is
changed.

<DesignName>.cydsn/
<DesignName>_<Arch>.uvopt

µVision library options file. This is
used by µVision to store some
settings, such as breakpoint
locations.

▪ Created in parallel with the library project file.

▪ Not modified by PSoC Creator after it has
been created.

PSoC 3:

<DesignName>.cydsn/
Generated_Source/PSoC3/
post_link.bat

PSoC 4/PSoC 5LP:

<DesignName>.cydsn/Export/
postbuild.bat

Post-build script file. This is run by
µVision after building the application
project.

▪ Replaced as a part of every PSoC Creator
build.

▪ Patches key information in to the final HEX
file.

▪ Checks to make sure that key settings like
the selected device, SRAM/flash address
and size are in sync between PSoC Creator
and the µVision application project.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 508

Path/File Name Purpose Details

µVision 4:

<User_Selected_Path>/
<DesignName>.uvproj

µVision 5:

<User_Selected_Path>
/<DesignName>.uvprojx

µVision application project. This links
against the library project to create
the final HEX file for a design.

▪ Only created/updated by PSoC Creator as a
part of the Export to IDE wizard. It may be
named/saved to any reasonable location.

▪ When creating this file, the list of files, build
settings, and key device information (device
name, SRAM/flash address and size) are
synchronized with PSoC Creator.

▪ When updating this file, PSoC Creator only
updates key device information (device
name, SRAM/flash address and size) and
updates references to the
Generated_Source/<Arch> folder in the
include path.

▪ When updating this file, PSoC Creator
preserves all other settings (including any
other directories found in the include path).

▪ The API files in the “Firmware” group in

µVision may be freely edited at any time.

▪ The API files in the “Start” group are
generated by PSoC Creator and will be
overwritten during the PSoC Creator build
process. These files contain key device
startup code.

▪ The files in the DebugLib and ReleaseLib
ensure that the generated library project
output files get linked in correctly for the
Debug and Release targets.

µVision 4:

<User_Selected_Path>/
<DesignName>.uvopt

µVision 5:

<User_Selected_Path>/
<DesignName>.uvoptx

µVision application options file. This
is used by µVision to store some
settings, such as breakpoint
locations.

▪ Created in parallel with the application
project file.

▪ Not modified by PSoC Creator after it has
been created.

<User_Selected_Path>/postlink.bat

(For PSoC 3 only)

Post-build script. This is run by
µVision after building the application

project.

▪ Created in parallel with the application
project file.

▪ Not modified by PSoC Creator after it has
been created.

▪ A simple wrapper script that calls the
post_link.bat script in the PSoC Creator

Generated_Source/<Arch> directory.

<User_Selected_Path>/
<DesignName>_wksp.uvmpw

(For PSoC 3 only)

µVision multi-application workspace.
This is a µVision multi-application
project file that contains references
to both the library and application
projects.

▪ Created in parallel with the application

project file.

▪ Not modified by PSoC Creator after it has

been created.

µVision 4:

<DesignName>.cydsn/
<DesignName>_<Arch>.sfr

(For PSoC 4 and PSoC 5LP only)

µVision System Viewer file. Contains
Component register details. This is
used by µVision for peripheral
register debug. This is the file format
expected by Keil µVision for enabling
peripheral register debug through its
System Viewer.

This file is obtained by converting the ARM
CMSIS standard SVD file using the
SVDConv.exe utility provided along with ARM-
MDK.

This file is generated along with the µVision
library project and updated whenever there is a

change in the register map of the design.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 509

Path/File Name Purpose Details

Generated CMSIS-Pack:

<DesignName>.cydsn/
<DesignName>.gpdsc

Generator Package Description file,
is working as the µVision project file.
Once it is created, it is shown at
PSoC Creator workspace/Results,
and gets updated during the build
process. If something happened and
it cannot be updated, there would be
a message in Output window that
µVision 5 project is not up to date.

This file is generated as part of export to
Generated CMSIS-Pack. The Generator Software
Pack (GPDSC file) references the PSoC Creator
executable and some of the project files and
application files which need to be exported.
These files include the files necessary for
implementation of PSoC framework, and the
user's entire firmware/Component source and
header files, except the files of cyboot and
design_wide Components as these files will be
specified in the pack.

Generated CMSIS-Pack:

<DesignName>.cydsn/Export/Pack/
<vendor.packName.version>.pack

This is the generated/exported pack
which will be installed in µVision. If
you remove the installed version of
µVision the installed pack will be
removed too, so we store the pack
file in the project directory to save it.

Once it is generated it will be
updated during the build process, if
something happened and it cannot
be updated, there would be a
message in Output window of
Creator that µVision 5 project is not
up to date.

This file is generated as part of export to
Generated CMSIS-Pack. The exported software
pack includes the system configuration files,
system startup files, library files, flash algorithms,
post-build commands, and the project
documentation.

This includes a Package Description (PDSC) file
which describes the contents of the pack and its
dependencies to other software packs.

See Also:

◼ Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE

◼ Exporting a Design to Generated CMSIS-Pack

◼ Exporting a PSoC 3 Design to Keil µVision IDE

GCC Settings in µVision

For projects using the GCC toolchain, you must set up a few options in µVision after opening the project.

Note This section is not applicable to CMSIS-Pack projects.

1. Select the Project menu and point to Manage > Components, Environments, Books...

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 510

2. On the Components, Environment, and Books dialog, select the Folders/Extensions tab and make sure the
Use GCC check box is selected. Notice that changing the toolchain will reset all Options for Target settings.

3. Click the ellipsis [...] button and browse to the directory above the "bin" directory in your GNU GCC installation.
The path will be similar to the following:

C:\Program Files (x86)\Cypress\PSoC Creator\x.x\PSoC Creator\import\gnu\arm\4.9.3

4. Click OK to close the Browse dialog, and then click OK to close the Components, Environment, and Books
dialog.

5. Right-click on the project and select Options, then select the Linker tab.

□ Deselect the Do not use Standard Startup Files check box.

□ Add .\Generated_Source\PSoC4 to the Include Paths field.

□ Click OK to close the dialog.

6. If the project has any additional libraries, add them in the Misc controls section on the Linker tab. Notice that
the path to library files in the Misc controls section must be separated by forward slashes to be recognized by
µVision.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 511

Also add the following command line option in the Misc controls section.

 -specs=nano.specs

Note When Using µVision 4, you may get the following error while building the project:

assembling CyBootAsmGnu.s...

C:\Program Files (x86)\Cypress\PSoC Creator\3.3\PSoC Creator\import\gnu\arm\4.9.3\bin\arm-none-eabi-as:
unrecognized option `--pd'

...

arm-none-eabi-gcc: error: ./uvbuild/cybootasmgnu.o: No such file or directory

Removing NDEBUG from the Define field in the Conditional Assembly Control Symbols section on the Assembler
tab will resolve the problem.

Note If you try to build your exported design in µVision and get the error that some section will not fit in region `rom'
or region `rom' overflowed, you need to add the command line option: -Wl,--gc-sections to the Misc controls

section to eliminate unused code and data from firmware binaries.

PSoC Creator Toolchain Settings

In order to use the ARM MDK Generic or DP8051 Keil Generic toolchains in a PSoC Creator project, you need to
specify the appropriate toolchain settings.

1. As a one-time step for all PSoC Creator projects, open the Options dialog, and navigate to Project
Management > Generic Toolchains.

2. Specify the appropriate binary directory for the ARM MDK Generic (for PSoC 4 and PSoC 5LP) and/or DP8051
Keil Generic (PSoC 3) toolchains.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 512

These are the binaries you have installed as part of your toolchain applications.

3. Then for each PSoC Creator project, open the Build Settings dialog, and choose the appropriate generic
toolchain to use.

See Also:

◼ Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE

◼ Exporting a PSoC 3 Design to Keil µVision IDE

◼ Project Management Options

◼ Build Settings

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 513

Registering MiniProg3/KitProg Drivers

MiniProg3/KitProg drivers enable the µVision programming/debugging interface to communicate with the device
using the MiniProg3 or any KitProg-based hardware assist. This configuration process updates the µVision tools.ini
file with entries in the [C51], [ARM], and [ARMADS] sections with paths to DLLs in the PSoC Creator install

directory.

1. The first time you run the IDE Export Wizard, PSoC Creator will prompt to install the drivers.

2. Click the Install Drivers for µVision button and the registration window will open.

You can also open this dialog from the PSoC Creator Tools menu.

3. Type the path or click [...] and navigate to the path to the Keil installation. This is the path to the directory that
contains the µVision tools.ini file.

□ For µVision 4 IDE, this is usually C:\Keil.

□ For µVision 5 IDE. this is usually C:\Keil_v5.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 514

4. Click Next >.

A confirmation screen will display to indicate that the driver was successfully registered.

Note If there is no tools.ini file in the selected directory, an error will display. Make sure you have chosen the
correct directory.

5. When complete, click Finish.

Flash Programming/Debugging using MiniProg3

Flash programming/debugging can be done in µVision using the MiniProg3 or any KitProg device (FTK-3, FTK-5,
DVK-030, DVK-050, etc.) (Hardware Assist). A driver used for this purpose can be selected in µVision.

The MiniProg3/KitProg driver implements the µVision interface called AGDI (Advanced Generic Debugger
Interface) that interfaces directly with the Keil µVision programmer/debugger.

Note Cypress provides a flash loader for the Keil ULink2 debugger probe for PSoC 5LP. This flash loader allows
Keil µVision to use the Keil ULink2 to program and debug the PSoC 5LP device. However, the flash loader does not
support programming the NVL's of the device, so you must program the device once using the MiniProg3 in order
to set those values.

For flash programming, the following functions are supported:

◼ Erasing All

◼ Downloading Flash, NVL &Protect

◼ Verifying Flash. NVL & Protect

◼ Resetting the device after programming

For debugging, the following features are supported:

◼ Start/Stop/Reset/Step In/Step Out/Run to Cursor

◼ Insert/Remove Breakpoints

◼ Enable/Disable Breakpoints

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 515

◼ Disable All Breakpoints

◼ Kill All Breakpoints

◼ Read/Write Registers

◼ Read/Write Memory

For flash programming in µVision, before initiating the flash download, select the “Cypress MiniProg3/KitProg vX.Y"
driver from the drop-down menu shown below. The settings button will bring up a dialog that can be used to select
different operations to be performed when you click the “LOAD" button.

◼ Erase Flash

◼ Program Flash

◼ Verify Flash

◼ Reset and Run

Select the Flash > Download menu option to initiate flash programming as shown in the following image.

The µVision debugger will be configured to use the MiniProg3/KitProg debug driver by selecting the “Cypress
Miniprog3/KitProg vX.Y" driver in the Debug tab, as shown in the following image. The "Settings" button will bring
up a dialog that contains the following settings:

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 516

◼ Protocol: SWD/JTAG

◼ Target Voltage

◼ Clock speed

◼ Programming Mode: Reset/Power Cycle

◼ Active Port: 10 pin/5 pin

Initiate debugging by clicking the “Start/Stop Debug session" under the Debug menu. You can save these debug
settings by clicking the Save All button in the µVision IDE.

Refer to the µVision IDE documentation.

Miscellaneous Export Notes

This section identifies certain key points that you should know:

Notes for All µVision Versions

◼ There is no support for programming/debugging simultaneously through multiple MiniProg3/KitProg devices
connected to USB ports.

◼ To ensure the MiniProg3/KitProg drivers are successfully registered, verify that the Tools.ini file includes the
paths to MiniProg3 drivers under the “C51”, “ARM”, and “ARMADS” sections. The following example shows
entries in the Tools.ini file for the default installation of PSoC Creator:

[ARM]

TDRV12="<INSTALL_DIR>\PSoC

Creator\export\ide\uVision\4.x\driver\cyuvdriver_8051.dll"("Cypress Miniprog3/KitProg

v<version>")

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 517

[ARMADS]

TDRV12="<INSTALL_DIR>\PSoC

Creator\export\ide\uVision\4.x\driver\cyuvdriver_arm.dll"("Cypress Miniprog3/KitProg

v<version>")

[C51]

TDRV9="<INSTALL_DIR>\PSoC

Creator\export\ide\uVision\4.x\driver\cyuvdriver_arm.dll"("Cypress Miniprog3/KitProg

v<version>")

The number after “TDRV” can vary depending on the µVision installation. Also, the version number in the path
and name of the driver will change based on the installed version of PSoC Creator.

◼ If the tools.ini file is not updated with the path to the MiniProg3/KitProg drivers, the file can be manually updated
with the appropriate path.

◼ Firmware code written in PSoC Creator before the µVision application project is created for the first time will by
synced. Once the µVision application project has been created, build settings and files are maintained in the
µVision GUI.

◼ The Export to IDE feature only supports the following PSoC Creator project variants:

□ PSoC 3 projects may use the “DP8051 Keil 9.51” or “DP8051 Keil Generic” toolchain.

□ PSoC 5LP projects may use the “ARM MDK Generic”, "GCC 4.9-2015-q1-update", or "GCC Generic"
toolchain.

□ All projects must either be “Normal” or “Bootloadable”. You can verify your project variant by looking in
Build Settings -> Code Generation” and examining the “Application Type” setting.

Note Regular Bootloadable projects are supported, but bootloadable projects that target multi-application
bootloaders are not.

◼ Code in the “Start” group in the µVision application project is automatically re-generated by PSoC Creator.

◼ µVision post-build steps are unable to report errors in a way that influences the final error/warning count. You
should examine your µVision output window to make sure that there are no issues reported by the post-build
scripts.

◼ Windows BAT files do no work reliably when run from UNC style paths (\\server\path\to\script.bat). In particular,
the BAT file processor may report that it can’t set the current working directory to \\server\path. You may work
around this issue by using the Windows “Map Network Drive” feature to assign a drive letter to your shared
server directory.

◼ µVision performs dynamic syntax checking to validate the program and detect potential code violations in real
time. However, sometimes when a function declaration is nested in several layers of header files, µVision
dynamic syntax checking might not find it. In these cases, you may see some warnings such as implicit function
declaration is not valid. If you are able to build your project in µVision, you can ignore these warnings.

Notes for µVision 5 generated software pack

◼ There is a dependency between <project_name>.gpdsc and the generated pack, which lets µVision select the
appropriate generated pack for the project. The selected packs are shown in the Manage Run-Time
Environment dialog in µVision. If your exported project does not include any application file or any Component
on the schematic (non-design-wide Component), this dependency is not resolved and the CMSIS CORE and
proper generated pack will not be automatically selected. Therefore, when you build your project, you may see
some errors during the link step as follows:

error: L6236E: No section matches selector - no section to be FIRST/LAST.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 518

Not enough information to list image symbols.

Not enough information to list the image map.

To fix this problem, open the Manage Run-Time Environment dialog in µVision and manually select the CMSIS
CORE, Device Startup, and Device Header (choose the Variant for the exported pack). Click OK and save the
project. Then try to build the project.

◼ It is not possible to work on a project in PSoC Creator and µVision 5 simultaneously. You need to close µVision
before reloading files modified by PSoC Creator. If you change your design in PSoC Creator and build it, PSoC
Creator automatically updates the pack. If accidentally you have µVision open while changed the design in
Creator, µVision might use the out of date pack, so you have to close it and re-open it to access the updated
pack.

◼ For µVision 5 exported projects, it is very important to keep <project_name>.gpdsc file and
<vendor_name.pack_name.pack_version>.pack in sync. If you export a project to µVision 5 and select the
Install the generated pack in µVision check box, the pack will be installed in the µVision installation directory
automatically. Also a copy of the generated pack will be located under the <project_directory>/Export/Pack
folder and a <project_name>.gpdsc file will be located in project directory. All three must be kept in sync.

◼ Once you have a <project_name>.gpdsc in the project directory, PSoC Creator detects it and updates it during
the build process. It also detects if you previously selected the Install the generated pack in µVision check
box, so it updates the pack in Export/Pack folder as well and installs it in µVision. If for any reason PSoC
Creator cannot install the pack during the build process (for example, say you uninstalled µVision 5 from your
system), you will see a message in PSoC Creator output window stating that the µVision 5 project is not up to
date and a re-export is required.

◼ If you change a previously exported project in PSoC Creator and re-export the project with the same pack
name and version, use caution. If you deselect the Install the generated pack in µVision check box (where
previously you selected it), the pack in the Export/Pack folder is substituted with the up to date pack in sync
with new gpdsc file. However, the installed pack in µVision is out of date (still the previous one), so you need to
manually install the new pack before building the project in µVision 5. You can install the pack by double-
clicking on it and following the dialog steps.

◼ There can be more than one pack in the Export/Pack directory, but the gpdsc file in the project directory is
always in sync with the last generated pack. So, you may save the current exported µVision 5 project
somewhere else to keep the current gpdsc file for the current pack file before changing the design and doing a
new export.

◼ Follow the manual steps to refer to the linker script file and post build command in the µVision Options for
Target dialog (See Opening Projects in µVision 5 IDE). If you do not add the linker script and try to build the
project in µVision, you will see an error similar to the following:

.\UVBuild\ADC_Differential_Preamplifier22.axf:

Error: L6320W: Ignoring --entry command. Cannot find argument 'Reset_Handler'.

.\UVBuild\ADC_Differential_Preamplifier22.axf:

Warning: L6320W: Ignoring --first command. Cannot find argument '__Vectors'.

Not enough information to list image symbols.

Not enough information to list the image map.

◼ The GCC toolchain is not supported by CMSIS Pack µVision 5.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 519

◼ If you added a pdf file as an application file during the export process, the pdf file will appear in the Manage
Run Time Environment dialog. The other application files will appear under the PSoC Creator in µVision
workspace. The following snapshot shows the pdf file named "Application file" in the Manage Run Time
Environment dialog. If you click on the link under description, the pdf file will open.

◼ If you do not choose to add the application files automatically, you can add them manually to the Source Group
in the µVision workspace. If you already added the application files automatically to the pack and also add them
manually, you will get a build error similar to the following:

.\UVBuild\ADC_Differential_Preamplifier22.axf:

Error: L6200E: Symbol __asm___6_main_c_5f9501ff____REV16 multiply defined (by main_1.o
and main.o).

See Also:

◼ Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE

◼ Exporting a PSoC 3 Design to Keil µVision IDE

3rd Party Bootloader Support

This section contains the following topics:

◼ Eclipse Bootloader Support

◼ IAR Bootloader Export Support

◼ µVision Bootloader Export Support

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 520

Note For PSoC 6 devices, refer to the Bootloader SDK guide and related collateral.

Eclipse Bootloader Support

Note These steps apply to all Bootloader/Bootloadable type projects, including Launcher and Combination projects.

Note For PSoC 6 devices, refer to the Bootloader SDK guide and related collateral.

Bootloader/Bootloadable Project Export

This section describes the steps necessary to export a single application Bootloader/Bootloadable project for
Eclipse IDE.

1. Export the bootloader project as usual. See Exporting a Design to Eclipse IDE.

2. Import and build bootloader project in Eclipse.

3. In PSoC Creator, configure the Bootloadable Component for the bootloadable project to point at the hex/out
files of the bootloader project in the Eclipse output directory.

4. Export bootloadable project.

Multi-Application Bootloader/Bootloadable Support

This section describes how to import a PSoC Creator multi-application bootloader project for use in the Eclipse IDE.

1. Export Bootloader and Bootloadable projects as usual. See Bootloader/Bootloadable Project Export. Import
them into Eclipse as separate projects.

2. In Eclipse. modify the Eclipse Bootloadable project's settings as follows:

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 521

3. Update the project's LINKER_FILE setting by appending "_1" before the ".ld" extension.

4. Update the Project's Artifact name by appending "_1".

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 522

5. Update Project Post-build steps by appending "_1".

6. Build Project

7. Repeat step 2.a to step 2.d, but replace "_1" with "_2".

8. Then, use CyElfTool.exe to create a combination hex file that has the bootloader and both bootloadable images
in it.

9. Open the postbuild.bat file found in the \Export directory.

10. Note the -flash_row_size, flash_array_size, flash_size command line arguments. Note the -

ee_array and -ee_row_size arguments as well, if they exist. You will use these values in the command line

shown in step 3.d. below.

11. In a Windows command line, cd into the .cydsn directory of your bootloadable project.

12. Run the CyElfTool.exe tool using a command similar to the following:

Export\CyElfTool.exe -M Debug\{ProjectName}_1 Debug\{ProjectName}_2

Debug\{ProjectName}.hex --flash_row_size 128 --flash_size 32768 --flash_array_size

32768

Note Flash and EE arguments are device-dependent and can be copied from the bootloadable's postbuild.bat
file.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 523

Note If you use the release configuration, make sure to change all instances of Debug in the above command
line to Release. The above CyElfTool.exe command will generate a combination hex file that contains the
bootloader image and both bootloadable images. It will have name {ProjectName}.hex.

13. You should now have two bootloadable .cyacd files, a bootloader elf file, and a combination hex file in the three
Eclipse project Debug directories listed above. You can now program and debug your bootloader, either
bootloadable or combination files as you wish.

IAR Bootloader Export Support

This section describes how to export a PSoC Creator bootloader project for use in the IAR IDE. Included are:

◼ Bootloader/Bootloadable Project Export

◼ Multi-Application Bootloader/Bootloadable Project Export

Note These steps apply to all Bootloader/Bootloadable type projects, including Launcher and Combination projects.

Note For PSoC 6 devices, refer to the Bootloader SDK guide and related collateral.

Bootloader/Bootloadable Project Export

This section describes the steps necessary to export a single application Bootloader/Bootloadable project for IAR
IDE.

1. Export the multi-application bootloader project as usual. See Exporting a Design to IAR IDE.

2. Import and build the bootloader project in IAR.

3. In PSoC Creator, configure the Bootloadable Component for the bootloadable project to point at the hex/out
files for the multi-application bootloader in the IAR output directory.

4. Export bootloadable project.

5. Import the bootloadable project into the IAR IDE.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 524

Multi-Application Bootloader/Bootloadable Project Export

This section describes the steps necessary to export a multi application Bootloader.

1. Follow steps 1-3 under Bootloader_Bootloadable_Project_Export.

2. Export the bootloadable project as usual, except with the following changes:

3. When naming your IAR bootloadable project, append "_1" to the end of the name.

4. When selecting the linker configuration file, make sure to select the one with the _1 in its name.

5. Build the project as usual.

6. Export a second IAR bootloadable from the same bootlodable project with the following changes:

7. When naming your IAR bootloadable project, append "_2" to the end of the name.

8. When selecting the linker configuration file, select the .icf with an _2 in its name.

9. Build the new project as usual.

10. Then, use CyElfTool.exe to create a combination hex file that has the bootloader and both bootloadable images
in it.

11. Open the postbuild.bat found in the export directory.

12. Copy the -flash_row_size, flash_array_size, flash_size command line arguments. Copy the -

ee_array and -ee_row_size arguments as well, if they exist.

13. In the Windows command line, cd into the .cydsn directory of your bootloadable project.

14. Run the CyElfTool.exe using a command similar to the following:

Export\CyElfTool.exe -M Debug\Exe\{ProjectName}_1.out Debug\Exe\{ProjectName}_2.out

Debug\Exe\{ProjectName}.hex --flash_size 262144 --flash_row_size 256 --ee_array 64 --

ee_row_size16

Note Flash and EE arguments are device-dependent and can be copied from the bootloadable's postbuild.bat
file.

Note If you use the release configuration, make sure to change all instances of Debug in the above command
line to Release. The above CyElfTool.exe command will generate a Combination hex file that contains the
bootloader image and both bootloadable images. It will have name {ProjecName}.hex.

15. You should now have two .out files and one hex file in the UVBuild directory. You can now program and debug
your bootloader, either bootloadable or combination files as you wish.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 525

µVision Bootloader Export Support

This topic describes how to export a PSoC Creator bootloader project for use in the µVision IDE. Included are:

◼ Bootloader/Bootloadable Project Export

◼ Multi-Application Bootloader/Bootloadable Project Export

Note For PSoC 6 devices, refer to the Bootloader SDK guide and related collateral.

Bootloader/Bootloadable Project Export

This section describes the steps necessary to export a single application Bootloader/Bootloadable project for
µVision IDE.

This section describes how to export a PSoC Creator multi-application bootloader project for use in the µVision
IDE.

1. Export the bootloader project as usual. See Exporting a Design to Keil µVision IDE.

2. Import and build the bootloader project in µVision.

3. In PSoC Creator, configure the Bootloadable Component for the bootloadable project to point at the hex/axf
files of the bootloader in the µVision output directory.

4. Export the bootloadable project.

5. Import the bootloadable project into µVision.

Multi-Application Bootloader/Bootloadable Project Export

µVision

This section describes how to export a PSoC Creator multi-application bootloader project for use in the µVision
IDE.

1. Follow steps 1-3 under Bootloader/Bootloadable Project Export.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 526

2. Export the bootloadable project as usual. This will automatically create a project file with the name
{ProjectName}_1.uvproj.

3. Build the bootloadable project as usual in µVision.

4. Create a second project in µVision as follows:

5. Open a command line and navigate to your bootloadable project's .cydsn directory.

6. Use the µVision command line to re-export the {ProjectName}.xml.

The command should be similar to the following:

{KeilInstallDir}\UV4\Uv4.exe {ProjectName}_2.uvproj -t {ProjectName}_2 -i

".\Export\{ProjectName}.xml" -c

"{PSoCCreatorInstallDir}\dev\CyPSoC.cdb"

7. Select Project > Options for Target to open the dialog, and select the Linker tab.

8. In the Scatter File text box, change the _1 of the scatter file to _2.

9. Build the new project as usual.

Generated CMSIS-Pack

This section describes how to export a PSoC Creator multi-application bootloader project for use in the Generated
CMSIS-Pack.

1. Follow steps 1-3 under Bootloader/Bootloadable Project Export.

2. Export the bootloadable project as usual, this will automatically create a project file with the name
{ProjectName}_1.uvprojx.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 527

3. Then select Project > Options for Target to open the dialog, and select the Linker tab. In the Scatter File text
box, choose the proper linker script with "_1" in the end such as Cm0RealView_1.scat for MDK.

4. Check that the pre-build script appears in the Options for Target dialog under the User tab; see Pre-Build/Post-
Build Script section for more information.

5. Follow any other steps required as described in Opening Projects in µVision 5 IDE, and build the bootloadable
project as usual in µVision. Then use the following steps:

6. Select Project > Options for Target to open the dialog, and select the Linker tab. In the Scatter File text box,
choose the proper linker script with "_2" in the end such as Cm0RealView_2.scat for MDK.

7. Select the Output tab and in the Name of Executable text box, and change "_1" to "_2" at the end of the
project name.

8. Build the bootloadable project again as usual in µVision.

µVision and Generated CMSIS-Pack

1. Use the CyElfTool.exe tool to create a combination hex file that has the bootloader and both bootloadable
images in it.

2. Open the postbuild.bat found in the \Export directory.

Integrating into 3rd Party IDEs

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 528

3. Copy the -flash_row_size, flash_array_size, flash_size command line arguments. Copy the -

ee_array and -ee_row_size arguments as well, if they exist.

4. In the Windows command line, cd into the .cydsn directory of your bootloadable project.

5. Run the CyElfTool.exe using a command similar to the following:

MDK toolchain:

Export\CyElfTool.exe -M UVBuild\{ProjectName}_1.axf UVBuild\{ProjectName}_2.axf

UVBuild\{ProjectName}.hex --flash_size 262144 --flash_row_size 256 --ee_array 64 --

ee_row_size16

GCC toolchain:

Export\CyElfTool.exe -M {ProjectName}_1.elf {ProjectName}_2.elf {ProjectName}.hex --

flash_size 262144 --flash_row_size 256 --ee_array 64 --ee_row_size16

Flash and EE arguments are device-dependent and can be copied from the bootloadable's postbuild.bat file.

6. You should now have two .axf files and one hex file in the Output directory. You can now program and debug
your bootloader, either bootloadable or combination files as you wish.

7. If you make any changes to either of your bootloadable projects, make sure those changes are mirrored in your
other bootloadable project.

8. If you re-export a bootloadable project from PSoC Creator, make sure to regenerate your second bootloadable
using the manual steps previously described.

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 529

7 Programming and Debugging

PSoC Programmer is integrated into PSoC Creator. Whenever you need to program a device and/or launch the
debugger, PSoC Programmer is automatically invoked. This saves the time of manually launching and configuring
PSoC Programmer as a separate application.

To Configure PSoC Programmer:

The first time you want to program/debug a device, there may need to be configuration options set, depending on
the hardware configuration. The following is a typical setup scenario:

1. Connect the device to the computer through the MiniProg3 / KitProg / Kit.

2. As needed, use the Select Debug Target dialog to configure the device settings. See also, Device
Configuration.

3. Launch the programmer/debugger.

To launch the programmer:

On the Build Toolbar, click the Program button.

This will build the current project if needed and check that the selected device is compatible with the device
specified in the project. PSoC Creator will then invoke PSoC Programmer to program the device. For more details
about the programmer, refer to the PSoC Programmer documentation.

To launch the debugger:

On the Build Toolbar, click the Debug button.

In addition to programming the device as specified above, this will also initiate a new debug session. For more
details about the debugger, see Using the Debugger.

See Also:

◼ MiniProg3

◼ Select Debug Target

◼ Build Toolbar Commands

◼ Using the Debugger

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 530

MiniProg3

The MiniProg3 is used for both programming and debugging a PSoC device. It supports a number of different
transfer protocols, including:

◼ SWD

◼ JTAG

◼ I2C

To Program or Debug a PSoC Device:

Configure the MiniProg3 for SWD or JTAG mode.

You can configure all MiniProg3 devices by setting up the default MiniProg3 configuration in the PSoC Creator
preferences (Program/Debug Options > MiniProg3). You can also configure the attached MiniProg3 by right clicking
on its entry in the Select Debug Target dialog. Both configuration options affect all attached MiniProg3s.

Note If the options for the MiniProg3 are configured for the MiniProg3 to supply voltage to the device, and the
device is already powered by an external source, the Settings may not match what the MiniProg3 is actually doing.

To Use the MiniProg3:

Ensure it is properly connected.

1. Connect the MiniProg3 to the computer with the provided USB cable.

2. Using the 10-pin ribbon cable, connect the MiniProg3 to the DVK board's processor module.

PSoC Creator will automatically detect the newly attached MiniProg3 and PSoC device. You can view both devices
in the Select Debug Target dialog, under the MiniProg3 connection type.

See Also:

◼ Program/Debug Options

◼ Select Debug Target

◼ Device Configuration

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 531

Select Debug Target

The Select Debug Target dialog allows you to select which attached device you want to program and debug. It also
provides a means of configuring the settings used to detect devices.

To Open the Dialog:

Open a project and choose Select Debug Target from the Debug menu.

This dialog may also display when you first click Debug or Program . It will display if you have more than
one device connected to your computer and if you have not already selected a device.

It uses the device type chosen in the Device Selector in order to filter what you can choose as the debug target.
The debugger will remember this selection for all subsequent debug sessions while PSoC Creator is opened.

If the target is connected to multiple devices on a JTAG, it will display the PSoC 3 / PSoC 5LP devices connected in
the chain.

If you wish to select a different debug target at any time, open the Select Debug Target dialog by choosing Debug >
Select Debug Target.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 532

To Reset Attached Devices:

Click on the connection node and click Port Acquire button.

This can be used to reset any attached devices and make sure the debug port is active.

To Filter the Devices Shown:

The devices displayed can be filtered based on the active project. The dialog can be configured to show the
following:

◼ all devices

◼ devices compatible with the selected device for the active project

◼ devices that are an exact match of the selected device for the active project

Note To be compatible, the target device must come from the same family and must have all (or more) of the
resources as the project's device.

To Select a Device:

Devices can be connected via the MiniProg3 or kits and used within PSoC Creator. Under each MiniProg3 and kit
will be a list of devices attached to that MiniProg3 or kit.

Click on the appropriate device from the list and click OK/Connect to use that device when programming or
debugging.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 533

The debugger will remember this selection for all subsequent debug sessions while PSoC Creator is opened. If you
want to select a different debug target at any time, re-open the Select Debug Target dialog.

Note The OK/Connect command locks the selected device for exclusive use by this session of PSoC Creator.

If the chip was programmed without debugging enabled, clicking Port Acquire may be necessary for PSoC Creator
to properly read the silicon revision. Doing so will reset the device and place it in a temporary debug state. While in
this debug state code will not execute.

If after running Port Acquire, PSoC Creator still has trouble recognizing the silicon revision, PSoC Creator may be
too old to handle this version of silicon, or the board may be incorrectly wired for the current settings in PSoC
Creator. Verify the wiring of the board and the options selected under the Programmer/Debugger Options dialog.
For example, if the options for the MiniProg3 are set to use Reset for the Programming Mode, then the MiniProg3's
XRES pin must be connected to the PSoC's XRES pin.

Context Menus:

Each node in the displayed tree may have commands accessible via the right-click menu. You can use these
commands to configure the communication channel settings, for example.

See Also:

◼ Using the Debugger

◼ Device Configuration

◼ MiniProg3

◼ QuickProgrammer

◼ Programmer/Debugger Options

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 534

Device Configuration

The Device Configuration dialog is used to configure PSoC Creator to identify a 3rd party device and report the
provided name instead of just the silicon ID.

This is done so the Select Debug Target dialog can list correct information about devices that are attached to a
computer.

Note While this configuration allows PSoC Creator to recognize 3rd party devices, these devices cannot be
selected for debugging. The primary use of the Device Configuration dialog is to configure the size of the Instruction
Register and Data Register for 3rd party devices attached in a JTAG chain.

To View Device Configuration:

Device Configuration can be viewed in two ways:

◼ From the Tools menu, select the Options > Program/Debug > Device Recognition.

◼ From the Select Debug Target dialog, right-click on the device node and select Configure.

See Also:

◼ Using the Debugger

◼ Select Debug Target

◼ MiniProg3

◼ Debugging Options

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 535

Using the Debugger

The PSoC Creator debugger allows you to observe the run-time behavior of your program and determine the
location of semantic errors.

The debugger understands features that are built into programming languages and their associated libraries. With
the debugger, you can break (suspend) execution of your program to examine your code, evaluate and edit
variables in your program, view registers, see the instructions created from your source code, and view the memory
space used by your application.

Using a debugger, you can examine the content of variables in your program without having to insert additional
calls to output the values. You can insert a breakpoint in your code to halt execution at the point you are interested
in.

When your program is halted (in break mode), you can examine local variables and other relevant data using
facilities, such as the Watch window and the Memory window. For more information, see Watch Window or Memory
Window. Not only can you view the contents while in break mode, you can edit or change the contents, if you
desire. In most cases, you will set your breakpoint in a source file, where you write and edit your code. Sometimes,
you may choose to set the breakpoint in the debugger's Disassembly window instead. The Disassembly window
shows you the instructions created from your source code. For more information, see the Disassembly Window.
Unlike printf or MsgBox, setting a breakpoint does not add an additional functional call to your source code.
Therefore, setting a breakpoint is unlikely to change the behavior of the program you are trying to debug.

Note Using the Debugger, you can program your device through PSoC Creator without launching PSoC
Programmer. Also, the device will automatically be reprogrammed when you start a debug session.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 536

The PSoC Creator debugger provides menu items, windows, and dialog boxes to access all its tools. You can
obtain help on any window, dialog box, or control by selecting the item and pressing [F1]. You can also drag and
drop to move debugging information between windows. The following lists the main sub-sections for the debugger:

◼ Debugger Commands

◼ Debugger Menus

◼ Text Editor Context Menu Commands

◼ Debugger Windows

◼ Error Handling

Supported Debuggers:

PSoC Creator supports the 8051 and ARM Cortex-M0, -M0+, -M3, and -M4 microprocessors. The supported
debugger is GDB.

Debugger Toolbar Commands

The Debugger toolbar contains many of the common commands you will use while debugging your programs:

The following table describes the toolbar commands:

Command Icon Shortcut Description

Execute
Code/ Resume

Execution

[F5] Used to start/continue the debugger.

• Automatically starts a build if the project is out-of-date

• Updates the status bar’s message to indicate that the debugger is
starting

• Programs the selected target with the latest version of the project

• Starts the debug session

Halt Execution

[Ctrl]+[Alt]+[Break] Halts the debug target in the middle of whatever it is currently doing.
Especially useful if the chip is not behaving as expected and you want to know

what it is actually doing.

Stop Debugging

[Shift]+[F5] Terminates the debug session and places PSoC Creator back in the standard
perspective. Use this if you are finished debugging the code and ready to

make changes or do something else.

Step Into

[F11] Executes a single line of code. If the line is a function call, the debugger will
break at the first instruction in the function. If the line is not a function call, the
debugger will break at the following line of code. Use this to verify that a line of
code is doing what is expected. This function temporarily allows the processor
to run until it finishes processing the instructions that make up the current line
of code.

Step Over

[F10] Executes a single line of code. The debugger will break at the following line of
code. If the current line of code is a function call, the function will be executed
without stopping. The debugger will then stop on the next line after the
function call. Use this to verify that a line of code is doing what is expected.
This function temporarily allows the processor to run until it finishes processing
the instructions that make up the current line of code.

Step Out

[Shift]+[F11] Finishes executing the current function. The processor is allowed to run until
the current function has finished. It will halt again at the first instruction after

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 537

Command Icon Shortcut Description

the function call. Use this to exit the current function and return to the calling
method. This function temporarily allows the processor to run until it finishes
processing the instructions that make up the current function.

Rebuild and Run

[Ctrl]+[Shift]+[F5] Halts the current debug session, recompiles the project, programs the device
with the updated code, and starts the debugger again. This allows for testing
changes much faster than having to start and stop the debugger each time a
change is made.

Reset

[Shift]+[Alt]+[F5] Resets the Program Counter (PC) to zero, and puts the processor into a run
state. This allows you to start over running the program without going through
the whole build and program sequence.

Enable/Disable All
Breakpoints

 Alternately enables and disables all breakpoints in the workspace. Use this to
quickly change the state of all breakpoints instead of having to change each
one individually. This is useful if there are multiple breakpoints set but you just
want the processor to run.

Enable/Disable
Global Interrupt

 Alternately enables and disables global interrupts. Disabling global interrupts
allows the processor to step through Main code without the occurrence of
Interrupts.

See Also:

◼ Using the Debugger

◼ Debugger Menu Commands

◼ Text Editor Context Menu Commands

Debugger Menu Commands

The Debug menus provide access to all of the functionality and information available to the current debugger. There
are two modes for the menu: inactive and active.

Inactive Mode Debug Menu:

When the debugger is not running, the Debug menu will be in the inactive state. In this state, only the functions that
make sense are available on the menu. For instance, the Halt function is unnecessary in the inactive state. In the
inactive mode, the Debug Windows submenu provides access to a limited subset of the available debug windows.

Command Icon Shortcut Description

Windows > Provides access to the various debugger windows. See
Debugger Windows.

 Breakpoints

[Ctrl] + [D], [B] Opens the Breakpoints window to display all of the breakpoints
that have been set in the workspace.

 Output

[Ctrl] + [D], [O] Opens the Output window.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 538

Command Icon Shortcut Description

Program

[Ctrl] + [F5] Provides a one click means of programming the selected debug
target with the code generated from the selected project.

• Automatically starts a build if the project is out-of-date

• Updates the status bar’s message to indicate that
programming is taking place.

• Launches PSoC Programmer behind the scenes to
perform the programming.

Select Debug Target

 Opens the Select Debug Target dialog to manually select the
debug target to use.

Debug

[F5] Starts the debugger.

Debug without Programming

[Alt] + [F5] Starts the debugger without programming the device.

Attach to Running Target

 Opens the Attach to Target dialog to connect to an already
programmed target device. Applicable to PSoC 3 and PSoC 5LP
only.

Toggle Breakpoint

[F9] Alternately inserts and removes a breakpoint in the current line
of code. This is the same as clicking in the Indicator Margin of
the Code Editor. You can use the [F9] key as a shortcut for this
command.

New Breakpoint > Provides access to the following breakpoint windows. See
Breakpoints Window.

 Address Breakpoint

[Ctrl] + [D], [A] Opens the Address Breakpoint window.

 File Line Breakpoint

[Ctrl] + [D], [F] Opens the File/Line Breakpoint window.

 Function Breakpoint

[Ctrl] + [D], [U] Opens the Function Breakpoint window.

 Variable Watchpoint

[Ctrl] + [D], [V] Opens the Variable Watchpoints window.

 Memory Watchpoint

[Ctrl] + [D], [E] Opens the Memory_Watchpoint window.

Delete All Breakpoints

[Ctrl] + [Shift] + [F9] Deletes all breakpoints in the workspace instead of having to
remove each one individually. This is useful if there are multiple
breakpoints set but you just want the processor to run.

Enable All Breakpoints

 Enables all breakpoints

Active Debug Windows Menu:

The active debug mode indicates that you have started a debug session; that the active PSoC Creator subsystem
is the debugger. In the active mode, the debugger is running and you have the full range of available functions; the
Debug Windows submenu provides access to all of the available debug windows.

Command Icon Shortcut Description

Windows > Provides access to the various debugger windows. See
Debugger Windows.

 Breakpoints

[Ctrl] + [D], [B] Opens the Breakpoints window to display all of the
breakpoints that have been set in the workspace.

 Output

[Ctrl] + [D], [O] Opens the Output window.

 Watch >

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 539

Command Icon Shortcut Description

 1

[Ctrl] + [D], [W] Opens one of four Watch windows to evaluate and display
variables, registers, or expressions.

 2

[Ctrl] + [Alt] + [W], [2]

 3

[Ctrl] + [Alt] + [W], [3]

 4

[Ctrl] + [Alt] + [W], [4]

 Locals

[Ctrl] + [D], [L] Opens the Locals window to view and modify all of the local
variables in the current debug frame.

 Components

[Ctrl] + [D], [P] Opens the Component Debug Window to view debug
information about Components in your design.

 Call Stack

[Ctrl] + [D], [C] Opens the Call Stack window to track the order that different
functions are called by the target program.

 Memory >

 1

[Ctrl] + [D], [M] Opens one of four Memory windows to display the values
stored in the memory of the processor.

 2

[Ctrl] + [Alt] + [M], [2]

 3

[Ctrl] + [Alt] + [M], [3]

 4

[Ctrl] + [Alt] + [M], [4]

 Disassembly

[Ctrl] + [Alt] + [D] Opens the Disassembly window to display the basic
instructions created for your source code.

 Registers

[Ctrl] + [R], [R] Opens the Registers window to display the core CPU
registers and their values

Program

[Ctrl] + [F5] Provides a one click means of programming the selected
debug target with the code generated from the selected

project.

• Automatically starts a build if the project is out-of-
date

• Updates the status bar’s message to indicate that
programming is taking place.

• Launches PSoC Programmer behind the scenes to
perform the programming.

Select Debug Target

 Opens the Select Debug Target dialog to manually select the
debug target to use.

Show Current Line

 Displays the line of code that is or will be executed.

Resume Execution

[F5] Continues the debugger. Starts the debug target running
again after a Halt or a breakpoint. Use this function to have
the program continue running to the next breakpoint.

Halt Execution

[Ctrl] + [Alt] + [Break] Pauses the debugger.

Stop Debugging

[Shift] + [F5] Stops the debugging session.

Rebuild and Run

[Ctrl] + [Shift] + [F5] Rebuilds the program and restarts the debugger.

Reset

[Ctrl] + [Alt] + [F5] Resets the debugger.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 540

Command Icon Shortcut Description

Step Into

[F11] Executes a single line of code. If the line is a function call,
the debugger will break at the first instruction in the function.
If the line is not a function call, the debugger will break at the
following line of code. Use this to verify that a line of code is
doing what is expected. This function temporarily allows the
processor to run until it finishes processing the instructions

that make up the current line of code.

Step Over

[F10] Executes a single line of code. The debugger will break at
the following line of code. If the current line of code is a
function call, the function will be executed without stopping.
The debugger will then stop on the next line after the function
call. Use this to verify that a line of code is doing what is
expected. This function temporarily allows the processor to
run until it finishes processing the instructions that make up
the current line of code.

Step Out

[Shift] + [F11] Finishes executing the current function. The processor is
allowed to run until the current function has finished. It will
halt again at the first instruction after the function call. Use
this to exit the current function and return to the calling
method. This function temporarily allows the processor to run
until it finishes processing the instructions that make up the

current function.

Toggle Breakpoint

[F9] Alternately inserts and removes a breakpoint in the current
line of code. This is the same as clicking in the Indicator
Margin of the Code Editor. You can use the [F9] key as a
shortcut for this command.

New Breakpoint > Provides access to the following breakpoint windows. See
Breakpoints Window.

 Address Breakpoint

[Ctrl] + [D], [A] Opens the Address Breakpoint window.

 File Line Breakpoint

[Ctrl] + [D], [F] Opens the File/Line Breakpoint window.

 Function Breakpoint

[Ctrl] + [D], [U] Opens the Function Breakpoint window.

 Variable Watchpoint

[Ctrl] + [D], [V] Opens the Variable Watchpoints window.

 Memory Watchpoint

[Ctrl] + [D], [E] Opens the Memory_Watchpoint window.

Delete All Breakpoints

[Ctrl] + [Shift] + [F9] Deletes all breakpoints in the workspace instead of having to
remove each one individually. This is useful if there are
multiple breakpoints set but you just want the processor to
run.

Enable All Breakpoints

 Enables all breakpoints.

Refresh Refreshes the debugger.

Enable/Disable Global Interrupt Enable/Disable (depending on current state) Global Interrupt

See Also:

◼ Using the Debugger

◼ Debugger Toolbar Commands

◼ Text Editor Context Menu Commands

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 541

Debugger Indicators

This topic explains the various indicator icons that appear in the debugger:

Breakpoints:

The following table shows the different breakpoint symbols you may encounter:

 Hardware

Permanent

Temporary

There are six main icons as follows:

◼ Breakpoint enabled

◼ Breakpoint disabled

◼ Breakpoint enabled with condition/hit count

◼ Breakpoint disabled with condition/hit count

◼ Breakpoint disabled due to error setting. View the error in the Notice List Window.

◼ Breakpoint with condition/hit count disabled due to error setting. View the error in the Notice List Window.

There are four main categories: hardware, software, permanent, and temporary. Red means hardware; green
means software. The "1" in the top right corner means temporary.

Watchpoints:

A watchpoint will halt the program when the specified memory location is read, written, or accessed by the CPU.
There are three watchpoint icons, as follows:

◼ Read Watchpoint

◼ Write Watchpoint

◼ Access Watchpoint

Current Line Indicator:

This indicates the current line of code being executed. It is an indication of the command that will be executed when
the program is resumed.

Active Stack Element:

This indicates the current stack element that is active, if not the topmost item in the call stack. It is an indication that
the debugger is not focused on the top most element of the stack.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 542

Stack Element:

This is grey highlighting surrounding a line of code indicating it is part of the call stack. This is an indication of how
code is being executed.

See Also:

◼ Using the Debugger

◼ Breakpoints Window

◼ Variable Watchpoints

◼ Call Stack Window

◼ Notice List Window

Debugger Status Messages

The PSoC Creator Status Bar will display various messages at different times when using the debugger. The
following sections describe the debugger messages you may see:

◼ Starting Debugger – Indicates that you requested to start debugging a project. PSoC Creator is in the process
of configuring the selected device for debugging.

◼ Checking Build – Indicates what is actually happening in the process of starting up the debugger. It takes a
while to check if a build is necessary and, if so, to start the build process. This task uses a great deal of CPU
power.

◼ Programming – Indicates that the selected debug target is being programmed. The programming process
takes about 3-5 seconds to complete. This message provides information that something is actually happening.

◼ Debugging - Halted – Indicates that the target device is halted and the user can interact with it. The debugger
has two states, halted and running. The options available to the user are significantly different between the
states. This message provides an at-a-glance indication of which state the debugger is in.

◼ Debugging - Running – Indicates that the target device is running and the user cannot interact with it.

See Also:

◼ Using the Debugger

Debugger Windows

The PSoC Creator debugger offers a set of windows that give useful information for the debug environment. The
displays of these windows are all optional, although some of them will be displayed by default.

All of these windows are individually dockable or they can be free floating. If a window is free floating, it can be
individually resized. If a window is docked, resizing it will affect the nearby docked windows. If more than one
window is docked in the same location, a set of tabs will be placed at the bottom of the window listing all of the
available windows. Persistence of the default window settings and the user interface to select the default windows
is controlled by the PSoC Creator framework. See Customizing the Framework for more information about
arranging and resizing windows.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 543

The following are the debugger windows available:

◼ Memory Window

◼ Watch Window

◼ Component Debug Window

◼ Breakpoints Window

◼ Registers Window

◼ Call Stack Window

◼ Locals Window

◼ Disassembly Window

Memory Window

The Memory window displays the values stored in the memory of the processor.

The memory is broken up into the different regions defined by the target architecture. The window displays a list of
addresses with the associated bytes along with an ASCII string that represents the series of displayed bytes. This
window is updated every time a halt event occurs.

Several memory windows can exist at one time, with each window focusing on a different area in memory. This tool
window is useful for viewing the raw data on the chip without any special filters or formatting. It is designed to allow
quick viewing of large blocks of data for validation purposes. In addition, this may be the only means of viewing
some regions of the chip that are not exposed via other windows.

To Display the Memory Window:

The debugger must be running or in break mode.

From the Debug menu, choose Windows > Memory, and click on 1, 2, 3, or 4.

Context Menus:

The following options are available if you right-click in the window:

◼ Columns – Changes the number of data columns displayed. Default is 8.

◼ Data View – Changes the formatting of data. Default is 1-byte int.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 544

◼ Data Style – Changes the display radix. Default is Hexadecimal.

◼ ASCII Display – Toggles whether the ASCII column is displayed

◼ Copy – Copies the selected item to the clipboard.

◼ Add Watchpoint – Adds a new watchpoint variable on the selected variable.

To Jump to a Specific Address:

Type the address in the Address field and press [Enter].

You can also jump to a specific function or variable address.

To Change Address Space:

Select the appropriate address space from the pull down menu.

To Edit Contents of Memory:

Click an entry to enable edit mode, type the desired value, and press [Enter].

See Also:

◼ Using the Debugger

Watch Window

The Watch window is used to evaluate and display variables, registers, or expressions. It will only display items that
you specifically requested.

You can add items to the watch window by selecting a block of text in the Text Editor, or by typing the expression
directly into the Name column of the Watch window.

Use the Watch window to evaluate a wide range of expressions:

◼ Simple variables – Enter just the variable name. For example, if the program contains 'uint16 foo = 3;',

enter 'foo'.

◼ Array variables – Enter just variable name with brackets around the index value. For example, if the program
contains 'uint8[10] foo;', enter 'foo[2]'.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 545

◼ Struct variables – Enter just the variable name with a period separating the different items. For example, if the
program contains 'struct foo { uint16 a; uint8 b }; struct foo temp;', enter 'foo' to view the

whole struct, or 'foo.a' to view just the 'a' member of the struct.

◼ Registers – Enter a '$' sign in front of the register name. For example, to view the Program Counter, enter
'$PC'. All register names can be viewed by opening the Registers window.

◼ Expressions – Enter the expression to evaluate. For example, to add a number to a variable, enter 'foo+3'.

◼ Assignments – Enter the assignment statement to evaluate. For example, to assign 3 to the variable foo, enter
'foo=3'.

The Watch window is automatically updated with the latest values at every halt event. While halted, you can modify
the values of items to view and update any aspect of the design that might interest you. For numeric values, there
is also an option to display the values in binary, octal, decimal, or hexadecimal. Several watch windows can exist at
one time, with each window focusing on different aspects of the program. Each Watch window contains the
following columns:

◼ Name – In this column you can type any valid expression recognized by the debugger.

◼ Value – The debugger evaluates the expression displayed in the Name column and places the result in this
column.

□ If the expression is a variable or register name, you can edit the value in this column to change the
contents of the variable or register.

□ You cannot edit the value of const variables.

□ You can edit and display register values for native-code applications only.

□ You can change the numeric format of the value to hexadecimal by right-clicking the Watch window and
choosing the Hexadecimal Display option from the shortcut menu.

◼ Address – Shows the location of the variable in memory.

◼ Type – This column displays the data type of the variable or expression.

◼ Radix – Indicates how the Value is displayed.

To Display the Watch Window:

The debugger must be running or in break mode.

From the Debug menu, choose Windows > Watch, and click on 1, 2, 3, or 4.

Context Menus:

The following options are available if you right-click in the window:

◼ Copy – Copies the selected item to the clipboard.

◼ Paste – Creates a new entry from the contents of the clipboard.

◼ Edit Value – Edits the entry’s value, same as double clicking on the Value field.

◼ Add Watchpoint – Adds a new watchpoint variable on the selected variable.

◼ Delete Watch – Deletes the selected entry from the list.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 546

◼ Select All – Selects all entries in the window.

◼ Clear All – Clears all entries in the window.

◼ Radix – Changes the default radix used by the debugger.

◼ Expand Children – Expands the entry’s children items.

◼ Collapse Parent – Collapses the entry’s parent item so child nodes are hidden.

To Enter a Watch Item:

1. Click in the Name column where it states "Click here to add."

2. Type the desired watch item and press [Enter].

To Modify a Watch Item:

Click an entry’s Value field to change the value of the item, if not read-only.

To Change the Radix Display:

To change all rows, right-click and choose Radix and click the desired display type.

To change a single row, double-click the row to change, and select the display type from the pull-down menu.

To Delete a Watch Item:

Right-click and select Delete Watch.

See Also:

◼ Using the Debugger

◼ Text Editor

◼ Registers window

Component Debug Window

The Component Debug Window is used to view debug information about Components in your design.

It provides a means of easily seeing what data is used to make up the Component. This can be helpful in tracking
down issues with custom Components or figuring out why a Component is not behaving as expected.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 547

This window is generated for each Component instance in a project for which you selected using the Select
Component Instance Debug Windows. Each Component window lists the memory and registers for the instance, as
well as any sub-Components that are used by it. Since not all Components have all three of these items, only the
resources actually used will be displayed. This means some windows may only have a memory or register view.
The memory and registers windows behave exactly like the main Memory window and Registers window. The list of
sub-Components are links to provide easy viewing access.

To Open this Window:

The debugger must be running or in break mode.

1. From the Debug menu, choose Windows > Components...

The Component Window Selector dialog displays.

2. Select the Component instances to view in the Components window and click OK.

The selected Component Debug Window(s) will open within the debugger framework. You can re-arrange how
these windows are displayed within the framework to suit your needs.

See Also:

◼ Select Component Instance Debug Windows

◼ Memory Window

◼ Registers Window

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 548

Select Component Instance Debug Windows

The Select Component Instance Debug Windows dialog allows you to select from a list of all Component instances
that contain debug information.

Each instance you select will display in a different Components Window during a debug session. It presents each of
the available Components in a simple tree view, which preserves the Components' nesting hierarchy. It also
provides a clear indication of which Components are made up of other Components.

To Select/Deselect a Component Window:

Check/uncheck a check box next to each entry to cause the window to be displayed (checked) or closed
(unchecked).

You can also use Select All or Deselect All, as desired.

See Also:

◼ Components Window

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 549

Breakpoints Window

The Breakpoints window displays all of the breakpoints that have been set in the workspace, whether they are
enabled or not. The window displays the list of breakpoints by type and location. If the processor (debug tool chain)
supports it, this window also provides additional information about the breakpoint such as the number of times it
has been hit and any condition that must be true for it to be triggered.

A breakpoint is used to cause the debugger to halt the next time its location is reached. Breakpoints can be set,
listed, disabled, or removed. Breakpoints can be set up in a number of different ways, such as specifying the line
number of a file on which a breakpoint should be set, a function in which a breakpoint must exist, or an address
when accessed.

If you set a hardware breakpoint, a red dot will appear in the Type column, as well as in the left margin of the
source/disassembly corresponding to the line in which the breakpoint is assigned. A disabled breakpoint has its
associated red dot replaced with a red circle. When a breakpoint is removed its corresponding dot/circle is removed
from the margin. For a list and description of all debugger indicators, see Debugger Indicators.

The number of breakpoints available is limited by the PSoC device. Refer to the appropriate device datasheet for
the number of breakpoints available. PSoC Creator reserves a single breakpoint to perform other operations such
as step, jump, and run-to-cursor. If the number of hardware breakpoints has been exhausted, and if you attempt to
add another, a message will display in the Output Window.

Note Breakpoints are hit twice when interrupts are enabled. This happens because the breakpoint gets hit, but
before the line of code is actually executed an interrupt takes over and gets processed. When the interrupt has
completed, the processor returns to the original line of code. This causes the breakpoint to be hit again.

To Open the Breakpoints Window:

Click Debug > Windows > Breakpoints.

Commands:

The Breakpoints window contains the following toolbar commands:

Icon Command Description

 New Pull down menu to create different types of breakpoints.

Delete Deletes the selected breakpoint.

Enable/Disable Breakpoint Alternately enables and disables the selected breakpoint.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 550

Icon Command Description

Delete All Breakpoints Deletes all breakpoints in the workspace instead of having to remove each one
individually. This is useful if there are multiple breakpoints set but you just want

the processor to run.

Enable/Disable All Breakpoints Alternately enables and disables all breakpoints in the workspace. Use this to
quickly change the state of all breakpoints instead of having to change each one
individually. This is useful if there are multiple breakpoints set but you just want
the processor to run.

 Columns Pull down menu to show/hide the columns in the window.

 Show full path for file names Alternately shows/hides the full path name for file/line breakpoints.

To Set a Breakpoint:

1. Open the file you want to debug.

2. Click at targeted points in the left margin of the open file to set breakpoints; click again to unset them.

To Modify an Existing Breakpoint:

You can modify the breakpoint by right-clicking on it to access the following commands:

◼ Delete – Deletes the selected breakpoint.

◼ Enable/Disable – Alternately enables and disables the selected breakpoint.

◼ Temporary – Sets the breakpoint as temporary.

◼ Location – Opens the selected type of breakpoint dialog to modify the location.

◼ Condition – Opens the Breakpoint Condition dialog.

◼ Hit Count – Opens the Breakpoint Hit Count dialog.

See Also:

◼ Address Breakpoint

◼ File/Line Breakpoint

◼ Function Breakpoint

◼ Variable Watchpoints

◼ Memory Watchpoint

◼ Breakpoint Condition

◼ Breakpoint Hit Count

◼ Output Window

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 551

Address Breakpoint

The Address Breakpoint dialog is used to create a new breakpoint (or modify an existing one) at a specific address.

This breakpoint will be hit each time the Program Counter (PC) matches the address. It does not require any
information about the source code that was compiled to generate the program data.

When not in debug mode, you will not see address breakpoints displayed in the margin indicator of the source
editor. These types of breakpoints are only shown in the margin while in debug mode. You can see these
breakpoints in the Breakpoints window.

To Open the Dialog:

New Breakpoint

For a new breakpoint:

◼ From the PSoC Creator Debug menu, select New Breakpoint > Address Breakpoint...

◼ In the Breakpoints window New menu, select Address...

Existing Breakpoint

For an existing breakpoint, in the Breakpoints window, right-click on the breakpoint and select Location...

To Create a New Breakpoint:

Enter either a decimal or hexadecimal address to break on and click OK.

To Modify an Existing Breakpoint:

You can modify the breakpoint by right-clicking on it in the Breakpoints window to access the following menus:

◼ Temporary - Sets the breakpoint as temporary.

◼ Location - Opens the Address Breakpoint dialog to modify the address.

◼ Condition - Opens the Breakpoint Condition dialog.

◼ Hit Count - Opens the Breakpoint Hit Count dialog.

See Also:

◼ Breakpoints Window

◼ File/Line Breakpoint

◼ Function Breakpoint

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 552

◼ Variable Watchpoints

◼ Breakpoint Condition

◼ Breakpoint Hit Count

File/Line Breakpoint

The File/Line Breakpoint dialog is used to create a new breakpoint (or modify an existing one) at a specific file line
of source code.

This breakpoint will be hit each time the line of code is being executed. This is the most convenient, but least
precise, means of adding a breakpoint.

To Open the Dialog:

New Breakpoint

For a new breakpoint, from the PSoC Creator Debug menu, select New Breakpoint > File/Line Breakpoint...

Existing Breakpoint

For an existing breakpoint, in the Breakpoints window, right-click on the breakpoint and select Location...

To Create a New Breakpoint:

Click in the Indicator Margin of the Code Editor at the line in which you want to create a breakpoint.

Note You can also use the dialog to enter the line number and full name of the file in which to put the breakpoint
and click OK.

To Modify an Existing Breakpoint:

You can modify the breakpoint by right-clicking on it in the Breakpoints window to access the following menus:

◼ Temporary - Sets the breakpoint as temporary.

◼ Location - Opens the Address Breakpoint dialog to modify the address.

◼ Condition - Opens the Breakpoint Condition dialog.

◼ Hit Count - Opens the Breakpoint Hit Count dialog.

See Also:

◼ Breakpoints Window

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 553

◼ Address Breakpoint

◼ Function Breakpoint

◼ Variable Watchpoints

◼ Breakpoint Condition

◼ Breakpoint Hit Count

Function Breakpoint

The Function Breakpoint dialog is used to create a new breakpoint (or modify an existing one) at a specific function
in the program.

Use this to create a breakpoint that will be hit when the function is called, independent of how the code inside and
around the function is changed.

When not in debug mode, you will not see function breakpoints displayed in the margin indicator of the source
editor. These types of breakpoints are only shown in the margin while in debug mode. You can see these
breakpoints in the Breakpoints window.

Note A function breakpoint does not get displayed in the margin indicator. When the function has arguments, Keil
expects ‘_’ in front of the function name. Otherwise the function breakpoint does not work. To address this, prefix
the function name with ‘_’.

To Open the Dialog:

New Breakpoint

For a new breakpoint:

◼ From the PSoC Creator Debug menu, select New Breakpoint > Function Breakpoint...

◼ In the Breakpoints window New menu, select Function...

Existing Breakpoint

For an existing breakpoint, in the Breakpoints window, right-click on the breakpoint and select Location...

To Create a New Breakpoint:

Enter the name of a function to break on and click OK.

To Modify an Existing Breakpoint:

You can modify the breakpoint by right-clicking on it in the Breakpoints window to access the following menus:

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 554

◼ Temporary - Sets the breakpoint as temporary.

◼ Location - Opens the Function Breakpoint dialog to modify the function.

◼ Condition - Opens the Breakpoint Condition dialog.

◼ Hit Count - Opens the Breakpoint Hit Count dialog.

See Also:

◼ Breakpoints Window

◼ Address Breakpoint

◼ File/Line Breakpoint

◼ Variable Watchpoints

◼ Breakpoint Condition

◼ Breakpoint Hit Count

Variable Watchpoints

The Variable Watchpoint dialog is used to create a watchpoint (or modify an existing one) on a specific variable.

A watchpoint is used to set a breakpoint on a place in data memory as opposed to the standard breakpoint, which
is used for program memory. Instead of setting the breakpoint on a line of code, you set it on a variable in the code.

This watchpoint will be hit each time the address at which the variable is located is read, written, or accessed based
on your selection for Break on. Use it to track when specific variables/addresses are read from or written to. This
can help track down why a specific memory location does not have the expected value. Just like a standard
breakpoint, when hit, a watchpoint will cause the program to stop executing and an indicator will be displayed
showing what instruction triggered the watchpoint.

Unlike standard breakpoints that are associated with a specific instruction in code, watchpoints can be hit at any
number of instructions. It all depends on the data that is accessed by the instruction. Because of this, watchpoints
do not show any indicator in the left hand margin of the text editor. However, they are still listed in the Breakpoint
Window.

Note The number of watchpoints available depends on the device being debugged. Refer to the applicable device
datasheet for more information.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 555

To Open the Dialog:

New Watchpoint

For a new watchpoint:

◼ From the PSoC Creator Debug menu, select New Breakpoint > Variable Watchpoint...

◼ In the Breakpoints window New menu, select Watch Variable...

Existing Watchpoint

For an existing watchpoint, in the Breakpoints window, right-click on the watchpoint and select Location...

To Create a New Watchpoint:

Enter the name of the variable to break on and click OK.

To Modify an Existing Breakpoint:

You can modify the breakpoint by right-clicking on it in the Breakpoints window to access the following menus:

◼ Location - Opens the Variable Watchpoint dialog to modify the address.

◼ Condition - Opens the Breakpoint Condition dialog.

◼ Hit Count - Opens the Breakpoint Hit Count dialog.

See Also:

◼ Breakpoints Window

◼ Address Breakpoint

◼ File/Line Breakpoint

◼ Function Breakpoint

◼ Memory Watchpoint

◼ Breakpoint Condition

◼ Breakpoint Hit Count

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 556

Memory Watchpoint

The Memory Watchpoint dialog allows you to select the address, width, address space, and break type.

Memory watchpoints are similar to Variable Watchpoints, but as they can be set on a particular memory address
instead of a variable. Memory watchpoints are used by the Analog Device Editor to detect when switches are
opened or closed. However, memory watchpoints can be used for other things as well, such as monitoring for stack
or data corruption.

The dialog contains the following fields:

◼ Address – The address to set the breakpoint on. (Note The bottom n-bits of the address will be ignored based
on the specified Width.)

◼ Width – The number of bytes to set the breakpoint on. This is implemented by ignoring the bottom n-bits in the
address.

◼ Break On – The type of memory access for which the watchpoint should be triggered.

◼ Address Space – If the device has multiple memory spaces, this selects which one.

To Open the Dialog:

New Watchpoint

For a new watchpoint:

◼ From the PSoC Creator Debug menu, select New Breakpoint > Memory Watchpoint...

◼ In the Breakpoints window New menu, select Watch Memory...

Existing Watchpoint

For an existing watchpoint, in the Breakpoints window, right-click on the watchpoint and select Location...

To Create a New Watchpoint:

Enter a decimal or hexadecimal address to break on and click OK.

To Modify an Existing Breakpoint:

You can modify the breakpoint by right-clicking on it in the Breakpoints window to access the following menus:

◼ Location - Opens the Memory Watchpoint dialog to modify the address.

◼ Condition - Opens the Breakpoint Condition dialog.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 557

◼ Hit Count - Opens the Breakpoint Hit Count dialog.

See Also:

◼ Breakpoints Window

◼ Address Breakpoint

◼ File/Line Breakpoint

◼ Function Breakpoint

◼ Variable Watchpoints

◼ Breakpoint Condition

◼ Breakpoint Hit Count

Breakpoint Condition

The Breakpoint Condition dialog is used to add/modify a condition on a breakpoint.

This allows you to control when the debugger will actually report that the breakpoint was hit. Use it to allow code to
be executed an arbitrary number of times while the condition is not true. This provides a quicker means of
identifying problems then breaking every time and then manually evaluating the condition.

To Open the Dialog:

In the Breakpoints window, right-click on the breakpoint and select Condition...

To Set a Breakpoint Condition:

Enter a condition that must evaluate to true before the code is halted, and click OK.

For example: i>10 or a==b

See Also:

◼ Breakpoints Window

◼ Address Breakpoint

◼ File/Line Breakpoint

◼ Function Breakpoint

◼ Variable Watchpoints

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 558

◼ Breakpoint Hit Count

Breakpoint Hit Count

The Breakpoint Hit Count dialog is used for setting the number of times the breakpoint must have been
encountered before actually stopping.

A breakpoint is hit when the breakpoint location is reached and the condition is satisfied. The hit count is the
number of times the breakpoint has been hit. This allows you to control when the debugger will actually report that
the breakpoint was hit. Use it to allow the code to be executed a few times before actually triggering the breakpoint
for user intervention. This is useful for quickly checking boundary conditions and finding out if code is executing
more than expected.

To Open the Dialog:

In the Breakpoints window, right-click on the breakpoint and select Hit Count...

To Set the Breakpoint Hit Count:

Enter the number of times the breakpoint can be hit before halting click OK.

Click Reset to reset the number of times the breakpoint has already been hit.

See Also:

◼ Breakpoints Window

◼ Address Breakpoint

◼ File/Line Breakpoint

◼ Function Breakpoint

◼ Variable Watchpoints

◼ Breakpoint Condition

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 559

Registers Window

The Registers window displays the core CPU registers and their values.

It provides a means of quickly viewing what is happening in core of the processor. It also allows for modifying the
value of any of the registers as you see fit to be sure the processor is doing what it is expected to do.

This window will be updated at every halt event. The values displayed in this window are displayed in hexadecimal
format by default.

To Display the Registers Window:

The debugger must be running or in break mode.

From the Debug menu, choose Windows > Registers.

Context Menus:

The following options are available if you right-click in the window:

◼ Copy – Copies the selected item to the clipboard.

◼ Select All – Selects all registers in the display.

◼ Details... – Opens the Register Details window.

◼ Radix – Changes the default radix used by the debugger.

To Edit a Register Value:

Click an entry to enable edit mode, type the desired value, and press [Enter].

See Also:

◼ Using the Debugger

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 560

Register Details

The Register Details dialog allows you to see more detailed information about a specific register. It displays each
of the fields within the register, their access restrictions, and the value that is set for the field.

Additionally, hovering over a field brings up a tool tip describing the field and, in some cases, what specific settings
mean.

To Open the Dialog:

Double click on a register in the Registers Window, or right click on the register and select Details...

To Modify a Value:

Click on the value cell for the field you wish to modify, set the new value and clicking the Commit button.

Click the Restore button to restore the value of the register that is currently on the chip.

See Also:

◼ Registers Window

◼ Debugger Windows

Call Stack Window

The Call Stack window is used to track the order that different functions are called by the target program.

Each function call that has not yet completed gets placed on the top of the stack. When the function is completed it
will get popped off. This tool is useful in seeing how code is being executed and to make sure things are happening
in the correct order. It provides an easy means of tracing exactly how the program got to executing the current line
of code.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 561

This window displays the name of each function and may be accompanied by optional information, such as line
number, byte offset, etc. The display of this optional information can be turned on or off.

To Display the Call Stack Window:

The debugger must be running or in break mode.

From the Debug menu, choose Windows and click Call Stack.

Context Menus:

The following options are available if you right-click in the window:

◼ Copy – Copies the selected item to the clipboard.

◼ Select All – Selects all registers in the display.

◼ Switch to Frame – Changes the active item, same as double clicking an item

◼ Run to Frame – Causes code to execute until the selected frame is reached

◼ Show Module Name – Shows the file that the function exists in

◼ Show Parameter Type – Shows the type of each function parameter

◼ Show Parameter Name – Shows the name of each function parameter

◼ Show Parameter Value – Shows the value of each function parameter

◼ Show Line Number – Shows the line in the function that performed the call

◼ Show Byte Offset – Shows the instruction address that the call was made from

To Change the Optional Information Displayed:

Right-click the Call Stack window and then click the desired information to show or hide from the shortcut menu.

To Change the Active Call Stack Item/Frame:

Double-click and entry or right-click and select Switch to Frame.

This will shift the focus on the line of code in the editor that corresponds to the clicked frame. It will also cause the
debugger to change the active frame. This causes the Locals window to update with the local variables from the
selected frame.

See Also:

◼ Using the Debugger

◼ Locals Window

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 562

Locals Window

The Locals window allows you to view and modify all of the local variables in the current debug frame.

You can see the value, type, and address of any variable. This allows you to quickly see if a function is behaving as
expected and updating its variable items appropriately.

This window contains the following columns:

◼ Name contains the names of all local variables in the current scope. Structure and array variables have a tree
control that you can use to display or hide the elements.

◼ Value shows the value contained by each variable. By default, integer variables are represented in
hexadecimal form. You can change the representation to decimal by right-clicking the Locals window and
choosing the Decimal Display option from the shortcut menu.

◼ Address shows the location of the variable in memory.

◼ Type identifies the data type of each variable listed in the Name column.

◼ Radix indicates how the Value is displayed.

To Display the Locals Window:

The debugger must be running or in break mode.

From the Debug menu, choose Windows and click Locals.

The default context is the function containing the current execution location.

Context Menus:

The following options are available if you right-click in the window:

◼ Copy – Copies the selected item to the clipboard.

◼ Edit Value – Edits the entry’s value, same as double clicking on the Value field.

◼ Add Watchpoint – Adds a new variable watchpoint on the selected variable.

◼ Select All – Selects all entries in the window.

◼ Radix – Changes the default radix used by the debugger.

◼ Expand Children – Expands the entry’s children items.

◼ Collapse Parent – Collapses the entry’s parent item so child nodes are hidden.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 563

To Modify a Variable:

Double-click an entry’s Value field to change the value of the item, if not read-only.

To Change the Radix Display:

To change all rows, right-click and choose Radix and click the desired display type.

To change a single row, double-click the row to change, and select the display type from the pull-down menu.

See Also:

◼ Using the Debugger

◼ Locals Window

Disassembly Window

The Disassembly window displays the basic instructions created for your source code.

Rather than forcing you to read instruction codes in binary or hexadecimal format, the instructions are
disassembled into assembly-language format. It allows you to view and enter breakpoints from combination of user
source code and compiled assembly instructions in order to see at a lower level exactly what the code is doing.

Using the Disassembly window, you can step through the assembly code, set breakpoints and interact with the
code using all the same capabilities you can use when debugging the C source code. Mixed mode disassembly, for
example interspersed ‘C’ code, may also be displayed.

Assembly-language code consists of mnemonics, which are abbreviations for instruction names, and symbols that
represent variables, registers, and constants. Each machine-language instruction is represented by one assembly-
language mnemonic, usually followed by one or more variables, registers, or constants. Because assembly code
relies heavily on processor registers (or, in the case of managed code, common language runtime registers), you
will often find it useful to use the Disassembly window in conjunction with the Registers window, which allows you to
examine register contents.

To Display the Disassembly Window:

The debugger must be running or in break mode.

From the Debug menu, choose Windows > Disassembly.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 564

Context Menus:

The following options are available if you right-click in the window:

◼ Insert Breakpoint – Inserts an address breakpoint at the current address.

◼ Break Here Once – Inserts a temporary address breakpoint at the address.

◼ Run to Instruction – Run the processor until the current address is reached.

◼ Go to PC – Sets the focus of the window to the current PC address.

◼ Go to Address – Sets the focus of the window on the provided address.

◼ Show Source Code – Intermixes user source and assembly code.

◼ Show Line Numbers – Shows/hides line numbers.

◼ Hide Empty Lines – Hides blank lines.

◼ Show Code Bytes – Shows the code data that represents the instructions.

◼ Copy – Copies the selected item to the clipboard.

To Insert a Breakpoint:

Click in the margin next to a line of code. Click again to remove it.

See Also:

◼ Using the Debugger

◼ Registers Window

Attach to Target

The Attach to Target dialog allows you to connect to an already programmed target device.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 565

Use this dialog to debug a design that has been running for a while and has stopped working as expected. You can
also use it for debugging a design for which no source code is available. Unlike the standard debugging flow, this
command will not reprogram the device before opening the debugger.

Note Use of this feature will cause a momentary interruption in the code running on the PSoC device.

You can select a project file, a workspace file, or an elf file to use as the debug file. If you select a Project or
Workspace, it will open that item in PSoC Creator. If a project is already open in PSoC Creator, this field will be
automatically populated with the active project. This field is not required to attach the debugger to the target, but
specifying a file does allow for more options while debugging.

Note For PSoC 6 devices, if you attach to a running Cm4 target, it will wake up the Cm0+ core.

To Open the Dialog:

Select Attach to Running Target... from the Debug menu.

To Select a File:

Click [...] and navigate to the Project, the Workspace, or the ELF file to select.

If a project is already open in PSoC Creator, this field will be automatically populated with the active project, and the
browse button will be disabled. You can only select a file if there is no active project.

This field is not required to attach the debugger to the target, but specifying it does allow for more options while
debugging.

To Select a Device:

Click on one of the devices listed that are attached to the computer. You may choose any item from this list to
attach to.

To Halt Target on Attach:

Check this box to cause the debugger to halt the target device and show you where it halted.

See Also:

◼ Debugger Menu Commands

◼ Using the Debugger

Error Handling

This section details how the debugging module will handle various errors, such as the USB cable being unplugged.

Multiple Debugger Instances:

You can run multiple instances of PSoC Creator on a single PC. A USB port and/or a JTAG DUT lock mechanism
and lock detection can be used to inform you when a PSoC Creator debugger instance has exclusive use of a USB
device and or a JTAG DUT.

Programming and Debugging

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 566

Hardware Target is Halted or Reset Externally:

It is possible for the hardware to be reset or halted independently of PSoC Creator. When this occurs, PSoC
Creator will inform you via a break point indicator in the source or disassembly and a status bar message reporting
the hardware has been reset/halted.

If the hardware is halted externally, the debugger will inform you as though you pressed Break. If reset, it will
behave as though it were disconnected.

Hardware is Disconnected:

If the hardware is disconnected from the PC during a debugging session, the IDE will inform you through a dialog
box the next time you attempt to communicate with the chip.

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 567

8 Completing the Project

There are several steps to complete your PSoC Creator project, including:

◼ Review Device Datasheet

◼ Optimize Compiler Settings

◼ Archive the Project

◼ Set Build Configuration

◼ Select Programming Protocol

◼ Enable Device Protection

◼ Select Optional Reset Line

◼ Select Flash Security Protection

◼ Enable Write Once Latch Flash Protection

◼ Evaluate General Programming Options

Review Device Datasheet

It is critical when going to production to finalize application pin selections, PCB layout, and hardware design against
the recommended layout detailed in the respective PSoC device datasheets. You can navigate to the correct PSoC
device datasheet available on www.cypress.com using the Documentation tab on the Workspace Explorer.

The device datasheet provides a summary of the features, electrical characteristics, pin-outs, device-level
specifications and peripheral electrical specifications. Common errors include layout error on the programming
interface, reset lines, power connections and associated voltage connections. Refer also to AN61290: PSoC 3 and
PSoC 5LP Hardware Design Considerations.

You could also experience Firmware and Hardware misalignments when you develop designs using development
kits that support the full-featured devices, and then move the design to a smaller PSoC package. The application
may target pins or features that are not available on the smaller PSoC device. Please verify the pin-out and feature
sets if the application is designed on a different PSoC package.

See Also:

◼ Completing the Project

◼ Workspace Explorer

http://www.cypress.com/go/AN61290
http://www.cypress.com/go/AN61290

Completing the Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 568

◼ AN61290

Optimize Compiler Settings

As you migrate from development to production, project designs may require advanced code compression to fit
large applications into the PSoC flash space. You will need to review the compiler code compression
documentation provided through the compiler installations. Depending on your compiler selection, navigate to one
of the following directories:

◼ <INSTALL_DIR>\PSoC Creator\import\gnu_cs\arm\<version>\share\doc\

◼ <INSTALL_DIR>\PSoC Creator\import\keil\pk51\<version>\C51\hlp

Note These documents are also available directly from the PSoC Creator Help menu.

See Also:

◼ Completing the Project

◼ Help Menu

Download and Archive Development Tools

As you move to production with a design, Cypress recommends that you store a backup copy of the PSoC Creator
and PSoC Programmer development environments. This will be useful if you must return to a design environment in
the future to make modifications or updates to the production project. This can be accomplished by navigating to
the PSoC Creator and PSoC Programmer web pages and downloading the ISO images available in the downloads
tables. These ISO images can be used to burn CDs/DVDs with the archived software contents.

◼ http://www.cypress.com/go/psoccreator

◼ http://www.cypress.com/go/psocprogrammer

See Also:

◼ Completing the Project

Archive the Project

When the development project has moved to a production state, you may be able to archive your project using the
PSoC Creator Workspace/Project Archiver. The Archiver tool supports a number of options on file density, scope of
the archive, and compress options.

This is a valuable feature to store a development environment or place a project under source control.

See Also:

◼ Completing the Project

◼ Archiving a Workspace/Project

http://www.cypress.com/go/AN61290
http://www.cypress.com/go/psoccreator
http://www.cypress.com/go/psocprogrammer

Completing the Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 569

◼ Source Code Control

Set Build Configuration

PSoC Creator provides Debug and Release build configurations for the compiler tool chains. Changing between
build configurations can help when developing and testing a design. For example, while first developing code, it is
easiest to use the Debug configuration, which typically has fewer optimizations and produces more debug
information. As you move to a production state, the code becomes stable and is getting ready for release. Thus,
using the Release configuration becomes preferable as additional optimizations are often desired. These
optimizations help cut down the size of the program and allow it to run faster.

The Build Configuration toolbar is available by default:

If the toolbar is not available, refer to the Customize dialog topic for how to add it.

See Also:

◼ Completing the Project

◼ Customize

Completing the Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 570

Select Programming Protocol

PSoC Creator supports configuration of the programming port, in the System Editor. This is a critical selection when
going into production. Make sure that this selection matches your system configuration and expectation. This
applies to not only the initial programming event but also to subsequent programming events, if necessary.

To select this feature:

Open the design-wide resources (<project>.cydwr) file from the Workspace Explorer. Then, select the System tab.

Under the Programming\Debugging options, use the Debug Select pull-down menu to select the correct
programming protocol.

See Also:

◼ Completing the Project

◼ System Editor

◼ Workspace Explorer

Enable Device Protection

When completing a production design, you should select the Enable Device Protection feature. Enabling this
feature causes the part to implement flash protection settings and to disable debugging at run-time. It is still
possible to connect a programmer, but debugging will be disabled.

To select this feature:

Open the design-wide resources (<project>.cydwr) file from the Workspace Explorer. Then, select the System tab.

Under the Programming\Debugging options, select the Enable Device Protection check box.

Completing the Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 571

See Also:

◼ Completing the Project

◼ System Editor

◼ Workspace Explorer

Select Optional Reset Line

PSoC Creator supports optional reset (XRES) line selections, in the System Editor. It is important to ensure that this
selection has been either enabled or disabled depending on system designs.

To select this feature:

Open the design-wide resources (<project>.cydwr) file from the Workspace Explorer. Then, select the System tab.

Under the Programming\Debugging options, select or deselect the Use Optional XRES pull-down check box as
needed..

Note If you have selected the optional reset line and require in-system programming for your target system, you will
need to ensure that your programming solution (distributor, contract manufacturer, or third-party programming
vendor) supports power cycle programming modes.

See Also:

◼ Completing the Project

◼ System Editor

◼ Workspace Explorer

Completing the Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 572

Select Flash Security Protection

At the close of developing a production design, you may require flash protection of user code on the PSoC. You will
want to ensure that the PSoC application code will not be accessible by any outside entity. PSoC Creator supports
flash security selections from the design-wide resources Flash Security tab.

To Use this Feature:

Open the design-wide resources (<project>.cydwr) file from the Workspace Explorer. Then, select the Flash
Security tab.

Set up the flash security options as needed. Refer to Flash Security Editor for more information.

See Also:

◼ Completing the Project

◼ Workspace Explorer

◼ Flash Security Editor

Enable Write Once Latch Flash Protection

When completing a production level design, you may want to consider additional flash protection settings beyond
the Flash protections described in Select Flash Security Protection. PSoC products do support the write-once-latch
(WOL) programming protection. With this option enabled, you can modify the NVL settings to enable the WOL
option.

Once a device is programmed with the correct NVL configuration, it will be permanently locked. This feature should
be used carefully as the device will not be recoverable once the WOL is enabled. This option is available in the
PSoC Programmer tool through the Programming Options menu.

To enable a production HEX file to have the WOL option enabled, will need to include the protection code in the
NVL configuration data. To learn how to do this, refer to the appropriate PSoC device programming specifications
available online:

http://www.cypress.com/go/p3_p5_trm

See Also:

◼ Completing the Project

◼ Select Flash Security Protection

http://www.cypress.com/go/p3_p5_trm

Completing the Project

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 573

Evaluate General Programming Options

As your design is moving to completion, you will need to consider programming options and solutions. Cypress
currently provides a general programming web page that discusses many critical programming topics. Specifically,
you should review the available manufacturing programming solutions from your contract manufacturer, distributor -
through a value added program - , or directly through a qualified third-party programming vendor.

You can navigate to this programming web page to find details on critical programming topics such as schematic
requirements, programming specifications, available development programmers, and qualified third-party
production programming vendors.

http://www.cypress.com/go/programming

See Also:

◼ Completing the Project

http://www.cypress.com/go/programming

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 574

9 Reference Material

The following various documents are also included with this release

◼ Provided by Cypress

□ System Reference Guide

□ Component Author Guide

□ Customizer API Reference Guide

□ Tuner API Reference Guide

□ Warp Verilog Reference Guide

◼ Provided by Third Parties

The installed documentation is listed under Documentation on the PSoC Creator Help menu.

Component Author Guide

The Component Author Guide (CAG) provides instructions and information that will help you create Components for
PSoC Creator. The CAG is intended for advanced users to create sophisticated Components for end users to
interact with PSoC Creator. However, there are some basic principles in the CAG that will also benefit novice users
who may wish to create their own content.

The CAG is installed as part of the Component Development Kit, which also includes other documents and tools
including:

◼ Datapath Configure Tool and User Guide

◼ UDB Editor and User Guide

◼ Customizer API Reference Guide

◼ Warp Verilog Reference Guide

You can find all these tools and documents on the Windows Start menu or PSoC Creator menus.

http://www.cypress.com/documentation/Component-datasheets/psoc-creator-Component-author-guide?source=search&keywords=Component%20Author%20Guide
http://www.cypress.com/documentation/Component-datasheets/psoc-creator-datapath-configuration-tool-user-guide?source=search&keywords=Component%20Author%20Guide
http://www.cypress.com/documentation/Component-datasheets/psoc-creator-universal-digital-block-udb-editor-guide?source=search&keywords=Component%20Author%20Guide

Reference Material

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 575

Tuner API Reference Guide

The Tuner API Reference Guide provides API reference information for tuner used to customize Components that
can be tuned. This guide is generated from the tuner source code and comments. It is used in conjunction with the
Component Author Guide for advanced users to create sophisticated Components for end users to interact with
PSoC Creator.

This API reference guide is installed as part of the Component Development Kit. You can find it on the Windows
Start menu or the PSoC Creator Help menu.

Third Party References

PSoC Creator includes third party compilers, as well as the documentation provided with them.

This documentation is located in the following default installation directories:

◼ GNU Documentation - <INSTALL_DIR>\import\gnu_cs\arm\4.4.1\share\doc\arm-arm-none-eabi\pdf

◼ Keil Compiler Documentation - <INSTALL_DIR>\import\keil\C51\hlp

You can access these documents from the PSoC Creator Help menu.

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 576

10 Contact Us

Thank you for contacting us. We value your suggestions and comments to help us improve PSoC Creator.

Use any of the following methods to contact us:

◼ For live help, call 1-800-541-4736 and select 3.

◼ For Technical Support, visit the PSoC Software Community. This forum is monitored by Cypress applications
engineers.

Please include as much of the following as possible.

◼ Short problem description

◼ Build Version [Select About from the PSoC Creator Help menu.]

◼ O/S

◼ Error Message, if any

◼ What you were doing right before the problem occurred

◼ Severity of the problem (low, medium, high)

If possible, also include a screen shot.

https://community.cypress.com/community/MCU/psoc-software

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 577

11 Register PSoC Creator

The Register PSoC Creator dialog displays automatically at startup, unless you have already registered PSoC
Creator or indicated not to display the dialog.

You can also open this dialog from the Help menu by selecting Register...

To Register PSoC Creator:

Enter your MyCypress email address and password and click Register. Click Register Later to close the dialog
without registering.

◼ If the registration process fails, an error message will display on the dialog.

◼ If you cancel the registration process or if the network was unreachable after three attempts, the dialog will
display a check box that allows you to never register the product.

To Create a New Account:

If you do not already have a cypress.com user account, click the Create new account link. This will open your web
browser to the cypress.com account creation page.

If You Forgot your Password:

If you've forgotten your password, click the Forgot Password link. This will open your default web browser to the
cypress.com forgot password page.

Register PSoC Creator

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 578

Information Gathered:

The registration process will transmit the following configuration information to Cypress and associate it with your
cypress.com account.

◼ Cypress software product name and version

◼ Version of Windows and .NET

◼ CPU type and speed

◼ Memory size

If you are concerned about how we use the information gathered by our products, click the How Cypress will use
my information link to open your web browser to a page that documents the kinds of information Cypress gathers
during registration, the kinds of information gathered by the data collection system, and link to the Cypress privacy
policy page.

Information Levels:

Please select one of the following levels of information to be sent to Cypress to help improve PSoC Creator:

◼ Level 1 – basic information

◼ Level 2 – level 1, plus configuration information from builds

◼ Level 3 – level 2, plus usage and configuration information from design Components

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 579

12 Index

3

3rd Party Bootloader Support 519

3rd Party IDE 386, 387, 434, 452

A

Add/Configure Components 10

Add/Edit Design 237

Address Breakpoint 551

Analog Device Editor 216, 220, 227

Analog Device Editor Context Menus 220

Analog Device Editor Debugging 227

Archive Development Tools 568

Archive the Project 568

Archiving 67, 568

Assembler Build Settings 328

Assigning A Core in a Multi 64

Attach to Target 564

Attribute 339

Auto 87

Auto Complete 189

Autocomplete 189

B

Basic Design 21

Basic Hierarchical Design 42

Bootloader Bootloadable Project Export 520, 523, 525

Breakpoint Condition 557

Breakpoint Hit Count 558

Breakpoints Window 549

Build Menu 100, 316

Build Settings 317, 324, 325, 336

Build Toolbar Commands 315

Building 314

Built 169

Buses 176

Drawing 176

C

Call Stack Window 560

Catalog Placement 275

Certain FM Devices Only 242

Clock Editor 229

Clocks 229

CMSIS-Pack 422

Code 66

Code Editor 185, 187

Code Editor Context Menu Commands 187

Code Editor Toolbar 187

Code Example 16, 126

Code Explorer Window 190

Code Generation 317

Common Design Entry Toolbars 300

Compiler Build Settings 330

Index

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 580

Completing 567

Component 111, 112, 166, 271, 273, 280, 546, 574

Exporting 280

Component Author Guide 574

Component Catalog 166

Component Debug Window 546

Component Installer 111

Component Item 271

Adding 271

Component Terminals 273

Component Update 112

Component/Instance 53

Concepts 51

Configure Component Parameters 169

Configure Dialog Descriptions 285

Configure Local Clock 232

Configure System Clocks 233

Connecting Terminal 171

Connectors 181

Contact Us 576

Control File 338, 340, 342

Control File Format 340

Control File Pattern Matching 342

Copying 72

a 72

Project 72

Core Design 64

Create New 454

Creating 54, 73, 75, 164, 266, 277, 279, 422

µVision 422

Folders 75

New File 73

New Project 54

New Schematic 164

Parameter Validators 279

Symbol 266

Symbol Parameters 277

CSAttribute 339

Customize Commands 116

Customizer Build Settings 323

Customizing 83

Framework 83

CyElfTool Command Line Tool 381

CyHexTool Command Line Tool 379

CyPrjMgr Command Line Tool 369

D

Debug Build Settings 321

Debug Select 253

Debugger 101, 484, 487, 535, 536, 537, 541, 542

Using 535

Debugger Indicators 541

Debugger Menu Commands 101, 537

Debugger Status Messages 542

Debugger Toolbar Commands 536

Debugger Windows 542

Debugging 28, 514

Debugging in Eclipse 462

Debugging using µVision 514

Default Compiler 72

Defining 275

Dependencies 117

Description 70

Generating 70

Design 9, 28, 64, 138, 302, 311, 387, 389, 432, 434, 435,
438, 440, 444, 449, 452, 482, 490, 502, 503, 505

Debugging 28

Export 434, 435, 438

 Index

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 581

Design Elements Palette 302

Design Entry Options 138

Design Entry Reserved Words 311

Design to Makefile 503

Design Tutorials 9

Designs in Eclipse 389

Designs in Makefile 482, 505

Design-Wide Resources 210

Device Configuration 534

Device Selector 119

Device Update Installer 122

Directives 344

Directives Editor 258

disable schematic 183

Disabled Code 193

Disabling/Enabling Schematic Pages 183

Disassembly Window 563

DMA Editor 245

DMA Wizard 247, 249, 250, 252

DMA Wizard Generated Code 252

DMA Wizard Global Settings 249

DMA Wizard Transaction Descriptors 250

Dock Tool Windows 84

Document Windows 79

Download 568

Download and 568

Dragging Pin 212

Draw Multiple 307

Drawing 176

Buses 176

E

Eclipse Bootloader Support 520

Eclipse IDE 435

Eclipse Installation Configuration 452

Edit Menu 97

EEPROM Editor 263

Enable Device Protection 570

Enable Write Once Latch Flash Protection 572

Enumeration Types 123

Environment Options 148

Error Handling 565

Evaluate General Programming Options 573

Existing File 74

Opening 74

Existing Project 60, 63

Opening 60

Existing Project Item 63

Export 280, 434, 435, 438, 440, 444, 449, 490, 496, 503,
523, 525

Component 280

Design 434, 435, 438

Export New 440, 444

Exporting a Component 280

Exporting a Design to 434, 435, 438

Exporting a Design to Generated CMSIS 444

Exporting a Design to Makefile 449

Exporting a FM0 503

Exporting a PSoC 3 Design to 490

Exporting a PSoC 4 440

Expression Editor 299

F

Family Migration Information 125

File Menu 96

File/Line Breakpoint 552

Files 70, 96, 151, 387

Reloading 151

Find All References 191

Index

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 582

Find and Replace 141

Find Code Example 126

Find in Files 197

Find Replace 194

Find Results 207

Fixed Attribute 339

Flash Programming 514

Flash Security Editor 260

Flashing 462

and Debugging in Eclipse 462

Flashing PSoC 5LP 462

Float Tool Windows 83

FM0 502, 505

Opening 505

Folders 75

Creating 75

For PSoC 6 422

Format Shape 298

Framework 76, 83, 89

Customizing 83

Framework Description 76

Framework Interface Components 89

Function Breakpoint 553

FX2LP Drivers 513

G

GCC Settings in µVision 509

General Tasks 53

Generate Verilog 128

Generated CMSIS 476

Opening 476

Generated Files 348

Generating 69, 70

Description 70

Project Datasheet 69

Getting 9, 247

Started 9

Go 209

H

Hello World Blinky 10

Help Menu 105

Hide Tool Windows 87

How To 49

I

IAR Bootloader Export Support 523

IAR IDE 438

IAR Project 415, 465

IDE Export Files 507

Import Component 129

Import into Eclipse 454

Inline Code Diagnostics 192

Input 379

Integrating 386

Interrupt Editor 243

Interrupts 243, 291

J

J-Link 484

K

Keil µVision IDE 440, 490, 507

Keil µVision IDE Notes 507

Keil Compiler 382

Key 507

Keyboard Shortcuts 107

KitProg Drivers 513

L

Language Support Options 140

Library Component Project 32

 Index

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 583

Library Generation Build Settings 337

Library project 496

Lines 307, 379, 381

Linker Build Settings 334

Locals Window 562

Locked Route Cleanup 228

M

Manual Placement 224

Mapper 337

Memory Watchpoint 556

Memory Window 543

Merge Dialog 130

MFT Editor 242

MiniProg3 513, 514, 530

Registering 513

Miscellaneous Export Notes 516

Modified Files 131

Move Tool Windows 86

Moveshape 308

Multi 389

My First Design 10

My Templates 19

N

Names 179

New File 73

Creating 73

New Project 54

Creating 54

New Schematic 164

Creating 164

New Workspace 61

Adding 61

Notice Details 132

Notice List Window 92

O

Obsolete Device 133

Ohm Meter 222

Opening 60, 74, 476, 505

Existing File 74

Existing Project 60

FM0 505

Generated CMSIS 476

Optimize Compiler Settings 568

Options Dialog 134

Output Window 91

P

Pack 444

Pack Projects 476

Parameter Validators 279

Creating 279

Parameters 169

Peripheral Driver Library 324

Pin Editor 212

Pins 212, 240

Placer 337

Pre-Build/Post-Build Script 476

Print Preview 149

Probe 462

Program/Debug Options 145

Programmer 529

Project As 69

Saving 69

Project Build 389

Project Datasheet 69

Generating 69

Project Item 61

Index

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 584

Project Management 134

Project Menu 99

Project Types 52

Projects 52, 61, 67, 69, 72, 99, 422, 476, 496, 507, 567,
568

Archive 568

Completing 567

Copying 72

Properties 150

PSoC 51, 75, 314, 343, 383, 387, 389, 415, 422, 432, 434,
440, 452, 465, 482, 484, 490, 496, 511

PSoC 3 Projects for µVision IDE 496

PSoC 5LP 465

PSoC 5LP Design to 440

PSoC 5LP Designs 434

PSoC 5LP Designs with 452

PSoC 6 Designs in Makefile 432

PSoC Creator 51, 75, 314, 343, 482, 511

Understanding 51

PSoC Creator Framework 75

PSoC Creator Project 314

Building 314

PSoC Creator Toolchain Settings 511

PSoC UDBs 343

R

Reentrant Code in PSoC 3 383

Reference Material 574

Reference Tooltips 193

Register Details 560

Register PSoC Creator 577

Registering 513

MiniProg3 513

Registers Window 559

Regular Expressions 202

Reloading 151

Files 151

Replace in Files 199

Resource Meter 95

Review Device Datasheet 567

Route Editing 225

Router 337

Rubber-Banding 174

S

Saving 69

Project As 69

Schematic 161, 162, 184, 296

schematic comment 183

Schematic Editor 161, 162

Schematic Editor Context Menu Commands 162

Schematic Macro Editor 296

Schematic Terminals 184

schematic, disable 183

Search Result 208

Select Component Instance Debug Windows 548

Select Datasheet 153

Select Debug Target 531

Select Flash Security Protection 572

Select Optional Reset Line 571

Select Programming Protocol 570

Select Sheet Template 153

Select Source Clock 239, 240

Selecting 72

Default Compiler 72

Set Build Configuration 569

Setting 415, 465, 484, 487

Steps 465

Up for Segger J-Link 484

 Index

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 585

Up for ULink2 487

Setup Subsection 360

Shapes 308

Sheet Template Editor 297

Sheet Template Page Setup 154

Signal Name 155

Source Code Control 357

Standard Toolbar 106

Started 9

Getting 9

Starter Designs 16

Static Timing Analysis 360

Step7 490

Steps 465

Setting 465

Symbol 265, 266, 267, 270, 277

Creating 266

Symbol Editor 265, 270

Symbol Editor Context Menus 270

Symbol Parameters 277

Creating 277

Symbol Wizard 267

System Clock APIs 237

System Clocks 237

System Editor 253

T

Tab Groups 79

Target 325, 564

Attach 564

Target IDEs 325

Terminal Name 156

Text 141, 303

Text Editor Options 141

Third Party References 575

To Line 209

Tool Windows 78

Toolchain Build Settings 327

Tools Menu 104

Trace Debugger for PSoC 5LP 484

Tuner API Reference Guide 575

Tuner Communication Setup 157

Types 77

U

UDB Control Register 289

UDB Count7 292

UDB Datapath 285

UDB Design Elements Palette 283

UDB Editor 282

UDB Properties 284

UDB State Machine 293

UDB Status Interrupt Register 291

UDB Status Register 290

UDB Status Register Interrupt 291

ULink Debugger Probes 487

ULink Pro and Segger J 487

Understanding 51

PSoC Creator 51

Use Tabbed Documents 85

User Commands 336

Using 160, 181, 304, 389, 452, 514, 535

Debugger 535

Using Design Entry Tools 160

Using Multiple Pages 181

Using Multiple Pages and Connectors 181

Using Text Substitution 304

Using the Debugger 535

Index

PSoC Creator User Guide, Document Number: 001-93417 Rev *N 586

uVision 422, 476

uVision Bootloader Export Support 525

V

Variable Watchpoints 554

View Menu 98

W

Watch Window 544

Welcome 7

Wide Clock 237

Wildcards 206

Window Menu 104

Windows 77, 78, 104

Wire Labels 179

Wire Labels and Names 179

Wires 171, 179

Working 171, 184, 273, 303, 307, 308

Workspace 67, 89

Workspace Explorer 89

Workspace/Project 51

Writing 66

Code 66

X

XTAL Configuration 235

Z

Zooming 309

	User Guide
	Contents
	1 Welcome to PSoC Creator
	Revision History

	2 Getting Started
	Design Tutorials
	Beginner:
	Intermediate:
	Advanced:
	See Also:

	Beginner
	My First Design "Hello World Blinky"
	Create a New Project:
	Add/Configure Components:
	Assign Pin:
	Write C Code:
	Program the Device:
	Expand the Design:
	See Also:

	Code Examples
	To Use Code Example Projects:
	See Also:

	My Templates
	To Specify the My Templates Location:
	To Copy a Project to My Templates:
	To Create a Project from My Templates:

	Intermediate
	Basic Design
	Create a New Project:
	Select and Configure Digital Components:
	Select and Configure Analog Components:
	Edit Source Code:
	Build the Project:
	Next Steps:

	Debugging a Design
	Open Example Design:
	Set Breakpoints and Step:
	Set Hit Count and Variable Watchpoint:

	Advanced
	Library Component Project
	Create a New Project:
	Add a Shifter Component:
	Specify Placement in Component Catalog:
	Add a Shifter Implementation:
	Complete the Shifter Schematic:
	Using the Library:

	Basic Hierarchical Design
	Create a New Project:
	Add the Logic Circuit Library:
	Complete the Design:
	Close the Design:

	How To

	3 Understanding PSoC Creator
	Concepts
	Workspace/Project
	See Also:

	Project Types
	See Also:

	Component/Instance
	See Also:

	General Tasks
	Creating a New Project
	To Open this Wizard:
	To Create a New Project:
	Select project type
	Select project template (Design Projects Only)
	Select Library Project Processors (Library Projects Only)
	PSoC 6 Only Select Target IDEs
	Create Project (All Projects)

	See Also:

	Opening an Existing Project
	To Open this Dialog:
	To Open a Project:
	See Also:

	Adding a New Workspace/Project Item
	To Open the Dialog:
	To Add an Item:
	See Also:

	Adding an Existing Project Item
	To Add an Existing Item:
	See Also:

	Assigning a Core in a Multi-Core Design
	Cores Property
	Processor Property
	See Also:

	Writing Code
	Embedded Programming with C - Beginners Resources:
	Including Code in Generated Source
	Macro Callbacks
	Merge Regions
	See Also:

	Archiving a Workspace/Project
	To Open the Dialog:
	To Archive a Project/Workspace:
	See Also:

	Saving a Project As
	To Save a Project As:
	See Also:

	Generating a Project Datasheet
	To Generate a Project Datasheet:
	See Also:

	Generating Description Files
	To Enable the Feature (Per Project):
	To Generate Description Files:
	Notes:
	Command Line
	See Also:

	Copying a Project
	To Copy a Project:
	To Paste a Project:
	See Also:

	Selecting a Default Compiler
	See Also:

	Creating a New File
	To Open this Dialog:
	To Create a New File:
	See Also:

	Opening an Existing File
	To Open this Dialog:
	To Open a File:
	See Also:

	Creating Folders
	Filters:
	To Create Physical Folders:
	To Create Virtual Folders:
	See Also:

	PSoC Creator Framework
	Framework Description
	Workspace Explorer:
	Document Work Area:
	Start Page

	Output Window:
	Status Bar
	See Also:

	Window Types
	Tool windows:
	Document windows:
	Arranging Windows:
	See Also:

	Tool Windows
	Tool Window Toolbar:
	See Also:

	Document Windows
	Document Work Area Toolbar:
	Document Tab Context Menus:
	Project File Context Menu
	Non-Project File Context Menu

	To Select Document Windows:
	Tab Groups:
	Split Windows:
	See Also:

	Customizing the Framework
	To Float Tool Windows
	See Also:
	To Dock Tool Windows
	See Also:
	To Use Tabbed Documents
	See Also:
	To Move Tool Windows
	See Also:
	To Auto-Hide Tool Windows:
	To Turn On Auto-Hide:
	To Show the Hidden Window:
	To Turn Off Auto Hide:
	See Also:

	Framework Interface Components
	Workspace Explorer
	Toolbar Commands:
	To Open a File:
	Source Tab:
	Generated Source

	Components Tab:
	Documentation Tab:
	Results Tab:
	See Also:

	Output Window
	To Display the Output Window:
	Toolbar:
	Show output from
	Clear all

	See Also:

	Notice List Window
	Design Rule Checker (DRC):
	To Open the Notice List Window:
	To Display Errors in Tools:
	To View the Message Description:
	Context Menu:
	See Also:

	Resource Meter
	Description
	To Open the Resource Meter:

	File Menu
	Edit Menu
	View Menu
	Project Menu
	Build Menu
	See Also:

	Debugger Menu Commands
	Inactive Mode Debug Menu:
	Active Debug Windows Menu:
	See Also:

	Tools Menu
	Window Menu
	Help Menu
	Standard Toolbar
	Keyboard Shortcuts
	See Also:

	Dialogs
	Component Installer
	To Open the Dialog:
	To Select a Component:
	To Install a Component:
	See Also:

	Component Update
	To Open the Dialog:
	Component Version States:
	To View Datasheets:
	To Update Components:
	See Also:

	Customize
	To Open this Dialog:
	Toolbars Tab
	Commands Tab

	See Also:

	Dependencies
	To Open the Dialog:
	Projects:
	System Dependencies:
	User Dependencies:
	Subdependencies:

	Build Order Tab:
	See Also:

	Device Selector
	To Open the Dialog:
	To Select a Device:
	To Sort a Device Category:
	To View Device Datasheet:
	To Show/Hide Columns:
	To Filter the Device Table:
	To Reset to Defaults:
	See Also:

	Device Update Installer
	To Open the Dialog:
	To Install/Download a Device:

	Enumeration Types
	To Open the Dialog:
	To Add an Enumeration Type:
	To Delete an Enumeration Type:

	See Also:

	Family Migration Information
	To Open this Dialog:
	To Use this Dialog:
	See Also:

	Find Code Example
	To Open the Find Code Example Dialog:
	All Examples
	Component-Specific Examples

	To Install/Update a Code Example:
	To Select a Code Example:
	See Also:

	Generate Verilog
	To Open this Dialog:
	To Choose Architecture/Family/Device:
	See Also:

	Import Component
	To Open this Dialog:
	To Import a Component:
	See Also:

	Merge Dialog
	To use the dialog:
	See Also:

	Modified Files
	To Use this Dialog:

	Notice Details
	To Open this Dialog:
	See Also:

	Obsolete Device
	See Also:

	Options Dialog
	To Open the Options Dialog:
	To Restore Defaults:
	Project Management Options:
	General:
	8051 Toolchains:
	ARM Toolchains:
	Default Dependencies:

	See Also:
	Design Entry Options
	General:
	Sheet Templates:
	Component Catalog:
	Component Security:

	See Also:
	Language Support Options
	General Options:
	Datasheet Language

	See Also:
	Text Editor Options
	General:
	Inline Diagnostics and Autocomplete:
	Fonts and Colors:
	Find and Replace:

	See Also:
	Program/Debug Options
	General:
	Fonts and Colors:
	Device Recognition:
	Port Configuration:

	See Also:
	Environment Options
	General Environment Options:
	Show Start Page at Startup
	Select Editor Tab on Right-Click
	Number of Recent Files
	External File Extensions

	See Also:

	Print Preview
	To Open the Print Preview Dialog:
	To Use the Print Preview Dialog:

	Properties
	To Open the Dialog:
	See Also:

	Reloading Files
	Reloading Modified Files:
	Reloading Unmodified Files:
	See Also:

	Select Datasheet
	To Use the Dialog:
	See Also:

	Select Sheet Template
	To Open the Dialog:
	Templates:
	Preview:
	See Also:

	Sheet Template Page Setup
	Paper:
	Orientation:
	Margins:
	See Also:

	Signal Name
	To Open the Dialog:
	Use Computed Name and Width:
	Specify Full Name:
	Indices:
	Preview:
	See Also:

	Terminal Name
	To Open the Dialog:
	Specify Name:
	Indices:
	Preview:
	See Also:

	Tuner Communication Setup
	To Open the Dialog:
	Interface Description:
	Ports
	Port Configuration
	Port Information

	See Also:

	Updated Configuration Files
	See Also:

	4 Using Design Entry Tools
	Schematic Editor
	Schematic Editor Context Menu Commands
	On Canvas:
	On Selected Object(s):
	See Also:

	Creating a New Schematic
	Top-Level Design Schematic:
	Component Implementation Schematic:
	See Also:

	Component Catalog
	Component Tabs
	Component Preview
	Toolbars:
	Context Menu Commands:
	To View the Component Datasheet:
	To Add a Component to a Schematic:
	To Search for a Component:
	See Also:

	Configure Component Parameters
	To Open this Dialog:
	To Open the Component Datasheet:
	To Rename the Component Instance:
	Built-In Parameters:
	See Also:

	Working with Wires
	To Draw a Wire:
	To Connect to a Terminal:
	To Draw Multi-Point Wires:
	To Connect to Another Wire:
	To Select a Wire/Net:
	See Also:

	Rubber-Banding
	To Use Rubber-Banding:
	To Correct a Rubber-Banding Problem:
	To Temporarily Disable Rubber-Banding:
	To Turn Off Rubber-Banding:
	To Temporarily Enable Rubber-Banding:
	See Also:

	Drawing Buses
	To Connect Buses to Smaller Width Signals (Ripping Signals):
	See Also:

	Wire Labels and Names
	Wire Label Display Scheme in the Schematic Editor:
	To Set a User Name for a Wire:
	To Move a Wire Label:
	See Also:

	Using Multiple Pages and Connectors
	To Add a Page:
	To Rename a Page:
	To Delete a Page:
	To Use Sheet Connectors:
	See Also:

	Disabling/Enabling Schematic Pages
	Possible Build Errors
	To Disable a Page:
	To Enable a Disabled Page:
	See Also:

	Working with Schematic Terminals
	To Place a Single Terminal:
	To Place Multiple Terminals:
	To Rename a Terminal:
	To Delete a Terminal:
	See Also:

	Code Editor
	To Open the Text Editor:
	See Also:

	Code Editor Toolbar
	Code Editor Context Menu Commands
	In Edit Mode:
	In Debug Mode:
	See Also:

	Autocomplete
	To Use the Feature:
	See Also:

	Code Explorer Window
	To Display the Code Explorer Tool Window:
	To Jump to Specific Location:
	Toolbar:
	Context Menu:
	Icons:
	See Also:

	Find All References
	To use This Feature:
	See Also:

	Inline Code Diagnostics
	To Use the Feature:
	See Also:

	Reference Tooltips
	To Use the Feature:
	See Also:

	Disabled Code

	Find Replace
	To Open the Find Replace Dialog:
	To Use the Find Replace Dialog:
	Find what
	Replace with
	Expression Builder
	Look in
	Find options
	Buttons

	See Also:

	Find in Files
	To open the Find in Files dialog:
	To use the Find in Files dialog:
	Find what
	Expression Builder
	Look in
	Find options
	Result options
	Buttons

	See Also:

	Replace in Files
	To Open the Replace in Files Dialog:
	To Use the Replace in Files Dialog:
	Find what
	Expression Builder
	Look in
	Find options
	Result options
	Buttons

	See Also:

	Regular Expressions
	Regular Expressions for Find and Replace:
	Additional Regular Expressions
	Standard Unicode Character Properties
	Additional Properties
	See Also:

	Wildcards
	Wildcards for Find and Replace:
	See Also:

	Find Results
	To Display Find Results Window Manually:
	To Select to a Match:
	See Also:

	Search Result
	See Also:

	Go To Line
	To Open the Dialog:
	To Go to a Specific Line:
	See Also:

	Design-Wide Resources
	To Open the <project>.cydwr File:
	To Add a <project>.cydwr File to a Design Project:
	To Delete/Exclude a <project>.cydwr File:
	See Also:

	Pin Editor
	To Open the Pin Editor:
	Device Image:
	Perimeter vs. Ball Grid Array
	Pin Coloring and Style
	Static Image
	Dragging a Pin

	Signal Table:
	To Assign a Pin:
	To Unassign a Pin:
	To Unassign All Pins:
	To Lock a Pin:
	To Unlock a Pin:
	To Scroll, Pan, and Zoom:
	See Also:

	Analog Device Editor
	Analog Interconnect Diagram:
	Wires
	Switches
	Pins and Components

	Design Information Table:
	Properties:
	Component/Pins View
	Mux View
	See Also:

	Analog Device Editor Context Menus
	On Component:
	On Pin:
	On Wire:
	On Switch:
	See Also:

	Ohm Meter
	To Open the Ohm Meter:
	Parasitic Tab:
	SPICE Tab:
	See Also:

	Manual Placement
	To Manually Place a Component:
	Signal Routing
	Resource Locking

	See Also:

	Route Editing
	Rip-Up
	Re-Route
	Mux Routes
	Net-Ties and Net-Joins

	See Also:

	Analog Device Editor Debugging
	Open/Close Switches:
	Switch Breakpoints:
	See Also:

	Locked Route Cleanup
	To Open this Dialog:
	To Use this Dialog:
	See Also:

	Clock Editor
	To Open the Clock Editor:
	Clock Editor Toolbar:
	Clock Table:
	Digital and Analog Clocks:
	Tolerance Support:
	See Also:

	Configure Local Clock
	To Create a Local Clock:
	To Open the Dialog:
	To Configure a Local Clock:
	See Also:

	Configure System Clocks
	Digital Signal:
	To Open this Dialog:
	To Enable/Disable a System Clock:
	See Also:

	XTAL Configuration
	To Open the Dialog:
	To Configure the XTAL:
	Fields:
	Frequency/Accuracy:
	Enable fault recovery:
	Enable oscillator voltage pumps:
	Use default timeout:
	Halt on XTAL startup error:
	Reference levels:
	Amplitude adjustment:

	See Also:

	System Clock APIs
	See Also:

	Add/Edit Design-Wide Clock
	To Open the Dialog:
	To Configure Design-Wide Clock:
	See Also:

	Select Source Clock
	To Open the Dialog:
	Signal Frequency:
	Accuracy:
	Toolbar:
	Show Un-named Signals:
	See Also:

	Select Source Clock (from Pin)
	To Open the Dialog:
	Signal Frequency:
	Accuracy:
	Toolbar:
	Table Fields:
	Show Unlocked Pins:
	See Also:

	MFT Editor (Certain FM Devices Only)
	To Open the MFT Editor:
	To Configure One or More Blocks:
	MFT Blocks:

	Interrupt Editor
	Non-Multi-Core Devices
	Multi-Core Devices
	To Open the Interrupt Editor:
	To Change Priority:
	See Also:

	DMA Editor
	To Open the DMA Editor:
	To Change Priority:
	To Sort DMA Editor Table:
	To Select/Edit a DMA:
	See Also:

	DMA Wizard
	To Open the DMA Wizard:
	Getting Started:
	See Also:
	DMA Wizard Global Settings
	Source:
	Destination:
	Set Manually:
	Transaction Descriptors:
	See Also:

	DMA Wizard Transaction Descriptors
	See Also:

	DMA Wizard Generated Code
	See Also:

	System Editor
	To Open the System Editor:
	To Edit a Property:
	Property Descriptions:
	Operating Conditions
	Analog Reference
	See Also:

	Directives Editor
	To Open the Directives Editor:
	To Add a Directive:
	To Edit a Directive:
	To Delete a Directive:
	See Also:

	Flash Security Editor
	Protection Levels:
	To Open the Flash Security Editor:
	To Change a Single Row of Flash:
	To Change Multiple Rows of Flash:
	Generated Hex (PSoC 3 Only):
	See Also:

	EEPROM Editor
	To Open the EEPROM Editor:
	To Change Single Cell Value:
	To Change Multiple Cell Values:
	To Import/Export Data:
	To Include EEPROM Image in Hex file:
	To Change the Display:
	Bootloader Support:
	Rules:
	See Also:

	Symbol Editor
	Creating a Symbol
	See Also:

	Symbol Wizard
	To Open the Symbol Wizard:
	To Add a New Terminal:
	To Add a Symbol Label:
	To Delete a Terminal:
	To Change Terminal Order:
	To Change the Title Color:
	See Also:

	Symbol Editor Context Menus
	On Canvas:
	On Selected Object(s):
	See Also:

	Adding a Component Item
	To Open the Dialog:
	To Use the Dialog:
	Templates
	Target generic device
	Component Name
	Item Name
	Configuration
	Destination

	Create New vs. Add Existing
	See Also:

	Working with Component Terminals
	To Place a Terminal:
	To Rename a Terminal:
	To Show/Hide a Terminal Label:
	To Delete a Terminal:
	See Also:

	Defining Catalog Placement
	To Open the Catalog Placement Dialog:
	To Define Catalog Placement:
	See Also:

	Creating Symbol Parameters
	To Open the Dialog:
	To Create Parameters:
	To Create Enumerated Types:
	See Also:

	Creating Parameter Validators
	To Open the Parameter Validators Dialog:
	To Add a Validator:
	See Also:

	Exporting a Component
	To Export a Component:
	See Also:

	UDB Editor
	See Also:
	UDB Design Elements Palette
	UDB Properties
	Toolbar:
	To Add an Input/Output/Variable:
	To Delete an Input/Output/Variable:
	To Edit Datapath Properties:
	See Also:

	UDB Datapath
	To Place a Datapath:
	To Configure Inputs, Registers, Outputs, and Instructions:
	To Configure General Datapath Properties:
	Configure Dialog Descriptions:
	Inputs
	Registers
	Outputs
	Instructions

	See Also:

	UDB Control Register
	To Place a Control Register:
	To Configure Bits:
	See Also:

	UDB Status Register
	To Place a Status Register:
	To Configure Bits:
	See Also:

	UDB Status Interrupt Register
	To Place a Status Interrupt Register:
	To Configure Bits:
	See Also:

	UDB Count7
	To Place a Count7:
	To Configure Bits:
	See Also:

	UDB State Machine
	To Place a State Machine:
	To Configure a State Machine:
	To Add a State Transition:
	To Adjust the Transition Arc:
	See Also:

	Other Tools
	Schematic Macro Editor
	To Create a Schematic Macro:
	See Also:

	Sheet Template Editor
	Creating a Sheet Template:
	Designing a Template:
	Using Template Properties:
	Saving a Template:
	See Also:

	Format Shape
	Common Shape Properties:
	Advanced Shape Properties:
	See Also:

	Expression Editor
	To Open the Dialog:

	Common Design Entry Toolbars
	Formatting:
	Shape Formatting:
	See Also:

	Design Elements Palette
	Common Elements:
	Schematic Editor Elements:
	Symbol Editor Elements:
	Normal vs. Sticky Mode:
	See Also:

	Working with Text
	To Create Text:
	To Edit Text:
	See Also:

	Using Text Substitution
	To Use Text Substitution:

	Available Substitution in Documents:
	Substitution Examples:
	Symbol Parameters
	Document Properties
	Instance Name
	Enumerations
	Complicated Expressions
	See Also:

	Working with Lines
	To Draw a Single Line:
	To Draw Multiple Lines:
	To Move a Line:
	To Resize a Line:
	See Also:

	Working with Shapes
	To Draw a Shape:
	To Move a Shape:
	To Resize a Shape:
	See Also:

	Zooming
	Use the Toolbar:
	Use the [Ctrl] Key:
	Use the Right-Click Menu
	See Also:

	Scrolling
	Design Entry Reserved Words

	5 Building a PSoC Creator Project
	Build Configurations:
	Section Topics:
	Build Toolbar Commands
	See Also:

	Build Menu
	See Also:

	Build Settings
	Build Settings Categories:
	To Open the Dialog:
	Build Settings Macros:
	Settings Options:
	Code Generation Category:
	Code Generation:
	Fitter:
	Synthesis:
	See Also:

	Debug Build Settings
	Debug Target:
	Debugging Bootloader/Bootloadable Projects
	See Also:

	Customizer Build Settings
	General:
	See Also:

	Peripheral Driver Library Build Settings
	Default PDL Installation
	Custom PDL Installation
	Software Package Imports
	See Also:

	Target IDEs Build Settings
	IDE Options
	Types of PSoC Creator Project Firmware
	See Also:

	Toolchain Build Settings
	General Category:
	See Also:

	Assembler Build Settings
	ARM Options:
	General
	Command Line

	Keil Options:
	General
	Listing File
	Command Line
	See Also:

	Compiler Build Settings
	ARM Options:
	Code Generation
	General
	Optimization
	Command Line

	Keil Options:
	Code Generation
	General
	Listing Files
	Optimization
	Command Line
	See Also:

	Linker Build Settings
	ARM Options:
	General
	Command Line
	printf, sprintf, and floating point values

	Keil Options:
	General
	Listing File
	Debugging
	Command Line
	See Also:

	User Commands Build Settings
	Library Generation Build Settings
	See Also:

	Mapper, Placer, Router
	Migrating from Older PSoC Creator Versions
	See Also:

	Control File
	To Create a Control File:
	See Also:

	Attribute, CSAttribute, and FixedAttribute
	Attribute:
	CSAttribute:
	FixedAttribute:
	Validity Checking:
	See Also:

	Control File Format
	Attribute_name:
	Patterns/Identifiers:
	Optional Keywords:
	Object-Class:
	Directive Terminator:
	Value:

	Control File Pattern Matching
	PSoC UDBs in PSoC Creator
	Directives
	Directive Format Summary:
	Directive Implementation on Different Devices
	placement_force:
	port_location:
	placement_group:
	synchronization_needed:
	no_factor:
	Examples:

	opt_level:
	Example:

	synthesis_off:
	Example:
	See Also:

	Generated Files (PSoC 3, PSoC 4, PSoC 5LP)
	Boot Component:
	Component APIs:
	Results Files:
	See Also:

	Generated Files (PSoC 6)
	Component APIs:
	Results Files:
	Generate Source Files MISRA Compliance
	Verification Environment
	Project Deviations
	Documentation Related Rules
	PSoC Creator Generated Sources Deviations

	See Also:

	Generated Files (FM0+)
	Component APIs:
	Results Files:
	See Also:

	Source Code Control
	Project Files/Folders
	XML-Based Description Files
	Optional Files

	Generated Source and Output Files
	External Source Files
	Temporary Folders
	Archiving Tool
	See Also:

	Static Timing Analysis
	To Open the STA Report:
	Report Layout:
	Project Information
	Expanding/Collapsing Links

	Report Sections:
	Timing Violation Section
	Clock Summary Section
	Register to Register Section
	Setup Subsection
	Hold Subsection
	Asynchronous Clock Crossing Section
	Input to Output Section
	Input to Clock Section
	Clock to Output Section
	Input to Output Enable Section
	Clock to Output Enable Section

	See Also:

	CyPrjMgr Command Line Tool
	Syntax:
	Tool-Wide Options:
	Chosen Workspace Options:
	Entire Workspace Options
	Target Project Options:
	Usage Scenarios and Examples
	–clean / -build / -rebuild
	-h
	–t
	–c
	–p
	–n
	–d
	-rev
	–m
	–prj
	–o, -cmp
	–import
	–rename
	–delete
	–exclude
	–l
	–s
	–v
	–addprj
	–con
	–cp
	-ver
	-batch
	-updateComp
	-updatePrj
	-archive
	-updateInst
	-forceWrite
	-noCustBuild
	-noRefresh
	-buildPreCompCust
	–updateDWInst
	-ol
	-warn
	-updateInstIfNeeded
	-ignoreDepsWarning
	-allowIllegalUpdates
	-export
	-generateDescFiles
	-verifyDescFileEnabled
	-verifyDescFileContents
	-pdlPath

	CyHexTool Command Line Tool
	Syntax:
	Normal Options:
	Bootloader/Bootloadable Options:
	Input:
	Output Format:
	Toolchain Support:
	Keil

	CyElfTool Command Line Tool
	Command Line Arguments:

	Keil Compiler
	To Register the Compiler:
	See Also:

	Reentrant Code in PSoC 3
	To Make Generated API Functions Reentrant:
	To Add a *.cyre file to a project:
	To enter reentrant functions:

	To Make User Application Code Reentrant:
	To Make Custom Component APIs Support Reentrancy:
	To Determine What to Make Reentrant:
	See Also:

	6 Integrating into 3rd Party IDEs
	PSoC 6 Designs
	Generating PSoC 6 Files for 3rd Party IDEs
	Using PSoC 6 Designs in Eclipse
	Eclipse Configuration
	Eclipse CDT
	ARM CMSIS Pack Management Plug-ins
	Eclipse CMSIS-Pack Folder
	PSoC Creator CMSIS Pack
	Creating a New Design Project
	Installing the CMSIS Pack File
	Creating the Eclipse Project
	Initial Project Setup
	Importing PDL Firmware
	Including Application Files in the Project
	Include Original Files
	Create new Files

	User Commands:
	Multi-Project Build
	PSoC 6 Debug Flow Using Eclipse/J-Link
	Install Required Software
	Program Flow
	Debug Flow
	Debugging non-secure M0+ applications with JTAG:
	Debugging secure M4 applications with JTAG or SWD:

	Setting up a PSoC 6 IAR Project
	Setting up Multi-core Debugging

	Creating µVision Projects for PSoC 6
	Next Steps:
	Setting Up ULink2/ULink Pro and Segger J-Link Debugger Probes for PSoC 6
	“RAM for Algorithm” values for Keil ULink and Segger J-Link Debuggers
	Add SMIF Flashloaders to PDL Build

	See Also:
	Building PSoC 6 Designs with Make
	Generated Files:
	Important Notes:
	See Also:

	PSoC 4 and PSoC 5LP Designs
	Exporting a Design to 3rd Party IDEs
	To Open this Dialog:
	To Perform the Export:

	Exporting a Design to Eclipse IDE
	Overview
	Export a Design to Eclipse IDE
	Next Steps:

	Exporting a Design to IAR IDE
	See Also:

	Exporting a PSoC 4/PSoC 5LP Design to Keil µVision IDE
	Changing Device Architectures
	Exporting a New PSoC Creator Design:
	See Also:

	Exporting a Design to Generated CMSIS-Pack
	Changing Devices
	Exporting a New PSoC Creator Design:
	See Also:

	Exporting a Design to Makefile
	To Export to Makefile:

	Using PSoC 4/PSoC 5LP Designs with 3rd Party IDEs
	PSoC 4/PSoC 5LP Eclipse Information
	Eclipse Installation Configuration
	Import into Eclipse
	Create New Eclipse CDT Firmware Application Project
	Building with Cygwin/make Installed
	Design Iteration between PSoC Creator and Eclipse
	Change in Project Build Settings
	Build Customization

	Flashing and Debugging in Eclipse
	Debug Flow within Eclipse
	Flashing PSoC 5LP Designs using the J-Link Probe

	Setting up a PSoC 4/PSoC 5LP IAR Project
	Setup for I-jet Programming and Debugging:
	See Also:

	Opening PSoC 4/PSoC 5LP Projects in µVision IDE
	Debug and Release Builds
	Setting Options in µVision
	See Also:

	Opening Generated CMSIS-Pack Projects (µVision 5 IDE)
	Debug and Release Builds
	Setting Options in µVision 5
	Scatter File
	Pre-Build/Post-Build Script
	See Also:

	Opening PSoC Creator Designs in Makefile
	Generated Files:
	Important Notes:
	See Also:

	Setting Up for Segger J-Link/J-Trace Debugger for PSoC 5LP
	Setting Up for ULink2/ULink Pro and Segger J-Link Debugger Probes
	“RAM for Algorithm” values for Keil ULink (PSoC 4/PRoC BLE/PSoC 5LP) and Segger J-Link (PSoC 4/PRoC BLE) debuggers

	PSoC 3 Designs
	Exporting a PSoC 3 Design to Keil µVision IDE
	Exporting a New PSoC Creator Design:
	See Also:

	Updating PSoC 3 Projects for µVision IDE Export
	Library Project Updates (Change PSoC Creator Design):
	What Gets Updated:
	Application Project Updates (Change PSoC Device):
	What Gets Updated:
	See Also:

	Opening PSoC 3 Projects in µVision IDE
	Debug and Release Builds
	Setting Options in µVision
	See Also:

	FM0+ Designs
	Exporting a FM0+ Design to Makefile
	To Export to Makefile:

	Opening FM0+ Designs in Makefile
	Generated Files:
	Important Notes:
	See Also:

	Keil µVision IDE Notes
	Notes
	Key IDE Export Files/Projects
	See Also:

	GCC Settings in µVision

	PSoC Creator Toolchain Settings
	See Also:

	Registering MiniProg3/KitProg Drivers
	Flash Programming/Debugging using MiniProg3
	Miscellaneous Export Notes
	Notes for All µVision Versions
	Notes for µVision 5 generated software pack
	See Also:

	3rd Party Bootloader Support
	Eclipse Bootloader Support
	Bootloader/Bootloadable Project Export
	Multi-Application Bootloader/Bootloadable Support

	IAR Bootloader Export Support
	Bootloader/Bootloadable Project Export
	Multi-Application Bootloader/Bootloadable Project Export

	µVision Bootloader Export Support
	Bootloader/Bootloadable Project Export
	Multi-Application Bootloader/Bootloadable Project Export
	µVision
	Generated CMSIS-Pack
	µVision and Generated CMSIS-Pack

	7 Programming and Debugging
	To Configure PSoC Programmer:
	To launch the programmer:
	To launch the debugger:
	See Also:
	MiniProg3
	To Program or Debug a PSoC Device:
	To Use the MiniProg3:
	See Also:

	Select Debug Target
	To Open the Dialog:
	To Reset Attached Devices:
	To Filter the Devices Shown:
	To Select a Device:
	Context Menus:
	See Also:

	Device Configuration
	To View Device Configuration:
	See Also:

	Using the Debugger
	Supported Debuggers:

	Debugger Toolbar Commands
	See Also:

	Debugger Menu Commands
	Inactive Mode Debug Menu:
	Active Debug Windows Menu:
	See Also:

	Debugger Indicators
	Breakpoints:
	Watchpoints:
	Current Line Indicator:
	Active Stack Element:
	Stack Element:
	See Also:

	Debugger Status Messages
	See Also:

	Debugger Windows
	Memory Window
	To Display the Memory Window:
	Context Menus:
	To Jump to a Specific Address:
	To Change Address Space:
	To Edit Contents of Memory:
	See Also:

	Watch Window
	To Display the Watch Window:
	Context Menus:
	To Enter a Watch Item:
	To Modify a Watch Item:
	To Change the Radix Display:
	To Delete a Watch Item:
	See Also:

	Component Debug Window
	To Open this Window:
	See Also:

	Select Component Instance Debug Windows
	To Select/Deselect a Component Window:
	See Also:

	Breakpoints Window
	To Open the Breakpoints Window:
	Commands:
	To Set a Breakpoint:
	To Modify an Existing Breakpoint:
	See Also:

	Address Breakpoint
	To Open the Dialog:
	New Breakpoint
	Existing Breakpoint

	To Create a New Breakpoint:
	To Modify an Existing Breakpoint:
	See Also:

	File/Line Breakpoint
	To Open the Dialog:
	New Breakpoint
	Existing Breakpoint

	To Create a New Breakpoint:
	To Modify an Existing Breakpoint:
	See Also:

	Function Breakpoint
	To Open the Dialog:
	New Breakpoint
	Existing Breakpoint

	To Create a New Breakpoint:
	To Modify an Existing Breakpoint:
	See Also:

	Variable Watchpoints
	To Open the Dialog:
	New Watchpoint
	Existing Watchpoint

	To Create a New Watchpoint:
	To Modify an Existing Breakpoint:
	See Also:

	Memory Watchpoint
	To Open the Dialog:
	New Watchpoint
	Existing Watchpoint

	To Create a New Watchpoint:
	To Modify an Existing Breakpoint:
	See Also:

	Breakpoint Condition
	To Open the Dialog:
	To Set a Breakpoint Condition:
	See Also:

	Breakpoint Hit Count
	To Open the Dialog:
	To Set the Breakpoint Hit Count:
	See Also:

	Registers Window
	To Display the Registers Window:
	Context Menus:
	To Edit a Register Value:
	See Also:

	Register Details
	To Open the Dialog:
	To Modify a Value:
	See Also:

	Call Stack Window
	To Display the Call Stack Window:
	Context Menus:
	To Change the Optional Information Displayed:
	To Change the Active Call Stack Item/Frame:
	See Also:

	Locals Window
	To Display the Locals Window:
	Context Menus:
	To Modify a Variable:
	To Change the Radix Display:
	See Also:

	Disassembly Window
	To Display the Disassembly Window:
	Context Menus:
	To Insert a Breakpoint:
	See Also:

	Attach to Target
	To Open the Dialog:
	To Select a File:
	To Select a Device:
	To Halt Target on Attach:
	See Also:

	Error Handling
	Multiple Debugger Instances:
	Hardware Target is Halted or Reset Externally:
	Hardware is Disconnected:

	8 Completing the Project
	Review Device Datasheet
	See Also:

	Optimize Compiler Settings
	See Also:

	Download and Archive Development Tools
	See Also:

	Archive the Project
	See Also:

	Set Build Configuration
	See Also:

	Select Programming Protocol
	To select this feature:
	See Also:

	Enable Device Protection
	To select this feature:
	See Also:

	Select Optional Reset Line
	To select this feature:
	See Also:

	Select Flash Security Protection
	To Use this Feature:
	See Also:

	Enable Write Once Latch Flash Protection
	See Also:

	Evaluate General Programming Options
	See Also:

	9 Reference Material
	Component Author Guide
	Tuner API Reference Guide
	Third Party References

	10 Contact Us
	11 Register PSoC Creator
	To Register PSoC Creator:
	To Create a New Account:
	If You Forgot your Password:
	Information Gathered:
	Information Levels:

	12 Index

