

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 002-03681 Rev. *A Revised November 21, 2017

Features

▪ Implements the industry-standard Hitachi HD44780 LCD display
driver chip protocol

▪ Requires only seven I/O pins on one I/O port

▪ Contains built-in character editor to create user-defined custom characters

▪ Supports horizontal and vertical bar graphs

General Description

The Character LCD component contains a set of library routines that enable simple use of one,
two, or four-line LCD modules that follow the Hitachi 44780 standard 4-bit interface. The
component provides APIs to implement horizontal and vertical bar graphs, or you can create and
display your own custom characters.

When to Use a Character LCD

Use the Character LCD component to display text data to the user of the product or to a
developer during design and debug.

Input/Output Connections

This section describes the various input and output connections available for the Character LCD.

LCD_Port – Pin Editor

The LCD uses seven consecutive pins of a physical port. To place the Character LCD onto your
desired port, use the Design-Wide Resources Pin Editor. The Pin Editor allows you to place this
component’s digital port on any free output port.

Note The seven pins can be placed to start at either Pin 1 or Pin 0 of the selected port, but may
not span ports. These pins are for the exclusive use of the LCD port and cannot be used for any
other purpose.

No direct access to the Character LCD’s port is needed as the software APIs manage all reads
and writes for you. The pin connections between an LCD module and a PSoC logical port are
detailed in Functional Description.

Character LCD
2.20

Character LCD PSoC® Creator™ Component Datasheet

Page 2 of 18 Document Number: 002-03681 Rev. *A

Component Parameters

Drag a Character LCD component onto your design and double-click it to open the Configure
dialog.

Parameters

LCD Custom Character Set

This parameter enables the selection of the following options:

▪ None (Default) – Do not do anything with custom characters.

▪ Vertical Bar Graph – Generate custom characters and API to manipulate a vertical bar
graph.

▪ Horizontal Bar Graph – Generate custom characters and API to manipulate a horizontal
bar graph.

▪ User Defined –Create custom characters and API to manipulate them.

After the component has loaded in the characters, the LCD_Char_PutChar() function and the
custom character constants (from the header file) can be used to display them.

Conversion Routines

Selecting the Include ASCII to Number Conversion Routines option adds several API
functions to the generated code. (Refer to the API table or function descriptions for more
information about these routines.)

PSoC® Creator™ Component Datasheet Character LCD

Document Number: 002-03681 Rev. *A Page 3 of 18

Custom Character Editor

The Custom Character Editor makes user-defined character sets easy to create through the
use of a GUI. Each of the 8 characters can be up to 5x8 pixels, though some hardware may not
display more than the top 5x7.

To use the Custom Character Editor, select User Defined as the option for the LCD Custom
Character Set. Then, click on the thumbnail of the character you want to edit.

To toggle a pixel in your character, click on the chosen pixel in the enlarged character view. You
may also click and drag to toggle multiple pixels.

After creating a custom character set, the GUI will generate a look-up array of eight custom
characters. Then the look-up array can be loaded to a LCD module. By default, the
LCD_Char_Start() routine loads custom characters if any were selected or created.

The component’s functionality allows you to create custom character sets in the code and load
them at run time. In that case, the last loaded character set overwrites the previous one and
becomes active. To restore the original custom character set use LCD_Char_customFonts[] as a
parameter for LCD_Char_LoadCustomFonts(). You don’t need to add LCD_Char_customFonts[]
as an external reference as it is already included in LCD_Char.h.

At run time, LCD_Char_LoadCustomFonts() can use that code as a parameter to load the
original character set to the LCD module.

Figure 1 shows a custom character encoded into an 8-byte custom character lookup array row.

Figure 1. Custom Character Encoding

As shown in the diagram, each row of a character is encoded as a single byte, from which only
the five least-significant bits are used. The top row of the first character is encoded in the first
byte of the custom font array. The next row of the first character is the second byte in the array.
The first row of the second character is the ninth byte in the array, and so on. The entire custom
font array consists of eight custom characters, creating a total array size of 64 bytes.

Character LCD PSoC® Creator™ Component Datasheet

Page 4 of 18 Document Number: 002-03681 Rev. *A

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function together with
related constants provided by the "include" files. The subsequent sections cover each function in
more detail.

By default, PSoC Creator assigns the instance name "LCD_Char_1" to the first instance of a
component in a given project. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
"LCD_Char."

Core Functions

Functions Description

LCD_Char_Start() Starts the module and loads custom character set to LCD, if it was defined.

LCD_Char_Stop() Turns off the LCD

LCD_Char_DisplayOn() Turns on the LCD module’s display

LCD_Char_DisplayOff() Turns off the LCD module’s display

LCD_Char_PrintString() Prints a null-terminated string to the screen, character by character

LCD_Char_PutChar() Sends a single character to the LCD module data register at the current position.

LCD_Char_Position() Sets the cursor’s position to match the row and column supplied

LCD_Char_WriteData() Writes a single byte of data to the LCD module data register

LCD_Char_WriteControl() Writes a single-byte instruction to the LCD module control register

LCD_Char_ClearDisplay() Clears the data from the LCD module’s screen

LCD_Char_IsReady() Polls the LCD until the ready bit is set or a timeout occurs.

LCD_Char_Sleep() Prepares component for entering sleep mode

LCD_Char_Wakeup() Restores components configuration and turns on the LCD

LCD_Char_Init() Performs initialization required for component’s normal work

LCD_Char_Enable() Turns on the display

LCD_Char_SaveConfig() Empty API provided to store any required data prior entering to a Sleep mode.

LCD_Char_RestoreConfig() Empty API provided to restore saved data after exiting a Sleep mode.

PSoC® Creator™ Component Datasheet Character LCD

Document Number: 002-03681 Rev. *A Page 5 of 18

void LCD_Char_Start(void)

Description: This function initializes the LCD hardware module as follows:

• Enables 4-bit interface

• Clears the display

• Enables auto cursor increment

• Resets the cursor to start position

It also loads a custom character set to LCD if it was defined in the customizer's GUI.

Parameters: None

Return Value: None

Side Effects: None

void LCD_Char_Stop(void)

Description: Turns off the display of the LCD screen.

Parameters: None

Return Value: None

Side Effects: None

void LCD_Char_DisplayOn(void)

Description: Turns the display on, without initializing it. It calls function LCD_Char_WriteControl() with
the appropriate argument to activate the display.

Parameters: None

Return Value: None

Side Effects: None

void LCD_Char_DisplayOff(void)

Description: Turns the display off, but does not reset the LCD module in any way. It calls function
LCD_Char_WriteControl() with the appropriate argument to deactivate the display.

Parameters: None

Return Value: None

Side Effects: None

Character LCD PSoC® Creator™ Component Datasheet

Page 6 of 18 Document Number: 002-03681 Rev. *A

void LCD_Char_PrintString(char8 const string[])

Description: Writes a null-terminated string of characters to the screen beginning at the current cursor
location.

Parameters: char8 const string[]: Null-terminated array of ASCII characters to be displayed on the LCD
module’s screen.

Return Value: None

Side Effects: None

void LCD_Char_PutChar(char8 character)

Description: Writes an individual character to the screen at the current cursor location. Used to display
custom characters through their named values. (LCD_Char_CUSTOM_0 through
LCD_Char_CUSTOM_7).

Parameters: char8 character: ASCII character to be displayed on the LCD module’s screen.

Return Value: None

Side Effects: None

void LCD_Char_Position(uint8 row, uint8 column)

Description: Moves the cursor to the location specified by arguments row and column.

Parameters: uint8 row: The row number at which to position the cursor. Minimum value is zero.

uint8 column: The column number at which to position the cursor. Minimum value is zero.

Return Value: None

Side Effects: None

void LCD_Char_WriteData(uint8 dByte)

Description: Writes data to the LCD RAM in the current position. Upon write completion, the position is
incremented or decremented depending on the entry mode specified.

Parameters: dByte: A byte value to be written to the LCD module.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Character LCD

Document Number: 002-03681 Rev. *A Page 7 of 18

void LCD_Char_WriteControl(uint8 cByte)

Description: Writes a command byte to the LCD module. Different LCD models can have their own
commands. Review the specific LCD datasheet for commands valid for that model.

Parameters: cByte: 8-bit value representing the command to be loaded into the command register of
the LCD module. Valid command parameters are specified in the table below:

Value Description

LCD_Char_CLEAR_DISPLAY Clear display

LCD_Char_RESET_CURSOR_POSITION
LCD_Char_CURSOR_HOME

Return cursor and LCD to home position

LCD_Char_CURSOR_LEFT Set left cursor move direction

LCD_Char_CURSOR_RIGHT Set right cursor move direction

LCD_Char_DISPLAY_CURSOR_ON Enable display and cursor

LCD_Char_DISPLAY_ON_CURSOR_OFF Enable display, cursor off

LCD_Char_DISPLAY_SCRL_LEFT Scroll display left

LCD_Char_DISPLAY_SCRL_RIGHT Scroll display right

LCD_Char_CURSOR_WINK Enable display, cursor off, set cursor wink

LCD_Char_CURSOR_BLINK Enable display and cursor, set cursor blink

LCD_Char_CURSOR_SH_LEFT Move cursor/Shift display left

LCD_Char_CURSOR_SH_RIGHT Move cursor/shift display right

LCD_Char_DISPLAY_2_LINES_5x10 Set display to be 2 lines 10 characters

Return Value: None

Side Effects: None

void LCD_Char_ClearDisplay(void)

Description: Clears the contents of the screen and resets the cursor location to be row and column
zero. It calls LCD_Char_WriteControl() with the appropriate argument to activate the
display.

Parameters: None

Return Value: None

Side Effects: Cursor position reset to row 0 column0.

Character LCD PSoC® Creator™ Component Datasheet

Page 8 of 18 Document Number: 002-03681 Rev. *A

void LCD_Char_IsReady(void)

Description: Polls the LCD until the ready bit is set or a timeout occurs.

Parameters: None

Return Value: None

Side Effects: Changes pins to HI-Z.

void LCD_Char_Sleep(void)

Description: This is the preferred routine to prepare the component for sleep. The LCD_Char_Sleep()
routine saves the current component state. Then it calls the LCD_Char_Stop() function and
calls LCD_Char_SaveConfig() to save the hardware configuration.

Call the LCD_Char_Sleep() function before calling the CyPmSleep() or the
CyPmHibernate() function. Refer to the PSoC Creator System Reference Guide for more
information about power management functions.

Parameters: None

Return Value: None

Side Effects: Doesn't change component pins’ drive modes. Use Port Component APIs for that purpose.
Because Character LCD is an interface component that has its own protocol, you need to
reinitialize the component after you have saved or restored component pin states.

void LCD_Char_Wakeup(void)

Description: Restores component’s configuration and turns on the LCD.

Parameters: None

Return Value: None

Side Effects: None

void LCD_Char_Init(void)

Description: Performs initialization required for the component's normal work. LCD_Char_Init() also
loads the custom character set if it was defined in the Configure dialog.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Character LCD

Document Number: 002-03681 Rev. *A Page 9 of 18

void LCD_Char_Enable(void)

Description: Turns on the display.

Parameters: None

Return Value: None

Side Effects: None

void LCD_Char_SaveConfig(void)

Description: Empties API provided to store any required data prior to entering Sleep mode.

Parameters: None

Return Value: None

Side Effects: None

void LCD_Char_RestoreConfig(void)

Description: Empties API provided to restore saved data after exiting Sleep mode.

Parameters: None

Return Value: None

Side Effects: None

Optional Custom Font Functions

The following optional functions are included, when needed, if a user-selected custom font is
selected. The LCD_Char_LoadCustomFonts() function comes with every custom font set,
whether it is user-defined or PSoC Creator generated. The LCD_Char_LoadCustomFonts()
function can be used to load the user-defined or the bar graph characters into the LCD
hardware. If loading custom fonts created by the tool, you will need to import a pointer to the
custom font to your project prior to using this function (refer to the description of
LCD_Char_LoadCustomFonts()). By default, the LCD_Char_Init() routine loads the user-
selected custom font. The draw bar graph commands are generated when a bar graph is
selected and enable the easy, dynamic adjustment of bar graphs.

Optional Custom Font Functions Description

LCD_Char_LoadCustomFonts() Loads custom characters into the LCD module

LCD_Char_DrawHorizontalBG() Draws a horizontal bar graph. Only available when a bar graph character set
has been selected.

LCD_Char_DrawVerticalBG() Draws a vertical bar graph. Only available when a bar graph character set
has been selected.

Character LCD PSoC® Creator™ Component Datasheet

Page 10 of 18 Document Number: 002-03681 Rev. *A

void LCD_Char_LoadCustomFonts(uint8 const customData[])

Description: Loads eight custom characters (bar graph or user-defined fonts) into the LCD module to use
the custom fonts during runtime. Only available if a custom character set was selected in the
customizer.

Parameters: uint8 const customData[]: Pointer to the head of an array of bytes. Array should be 64 bytes
long as 5x8 characters require 8 bytes per character.

Return Value: None

Side Effects: Overwrites any previous custom characters that may have been stored in the LCD module.

void LCD_Char_DrawHorizontalBG(uint8 row, uint8 column, uint8 maxCharacters,
uint8 value)

Description: Draws a horizontal bar graph. Only available if a horizontal or vertical bar graph was
selected.

Parameters: uint8 row: The row of the first character in the bar graph.

uint8 column: The column of the first character in the bar graph.

uint8 maxCharacters: Number of whole characters the bar graph consumes. Represents
height or width depending upon the bar graph selection. Each character is 5 pixels wide and
8 pixels high.

uint8 value: Number of shaded pixels to draw. May not exceed total pixel length (height) of
the bar graph.

Return Value: None

Side Effects: None

void LCD_Char_DrawVerticalBG(uint8 row, uint8 column, uint8 maxCharacters,
uint8 value)

Description: Draws a vertical bar graph. Only available if a horizontal or vertical bar graph was selected.

Parameters: uint8 row: The row of the first character in the bar graph.

uint8 column: The column of the first character in the bar graph.

uint8 maxCharacters: Number of whole characters the bar graph consumes. Represents
height or width depending upon the bar graph selection. Each character is 5 pixels wide and
8 pixels high.

uint8 value: Number of shaded pixels to draw. May not exceed total pixel length (height) of
the bar graph.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Character LCD

Document Number: 002-03681 Rev. *A Page 11 of 18

Optional Number to ASCII Conversion Routines

The following optional functions are included when needed by your selection:

Optional Number to ASCII
Conversion Routines

Description

LCD_Char_PrintInt8() Prints a two-ASCII-character hex representation of the 8-bit value to the
Character LCD module.

LCD_Char_PrintInt16() Prints a four-ASCII-character hex representation of the 16-bit value to the
Character LCD module.

LCD_Char_PrintInt32() Prints an uint32 hexadecimal number as eight ASCII characters.

LCD_Char_PrintNumber() Prints the decimal value of a 16-bit value as left-justified ASCII characters

LCD_Char_PrintU32Number() Prints an uint32 value as a left-justified decimal value.

void LCD_Char_PrintInt8(uint8 value)

Description: Prints a two-ASCII-character representation of the 8-bit value to the Character LCD
module.

Parameters: uint8 value: The 8-bit value to be printed in hexadecimal ASCII characters.

Return Value: None

Side Effects: None

void LCD_Char_PrintInt16(uint16 value)

Description: Prints a four-ASCII-character representation of the 16-bit value to the Character LCD
module.

Parameters: uint16 value: The 16-bit value to be printed in hexadecimal ASCII characters.

Return Value: None

Side Effects: None

void LCD_Char_PrintInt32(uint16 value)

Description: Prints an uint32 hexadecimal number as eight ASCII characters.

Parameters: uint32 value: The 32-bit value to be printed in hexadecimal ASCII characters.

Return Value: None

Side Effects: None

Character LCD PSoC® Creator™ Component Datasheet

Page 12 of 18 Document Number: 002-03681 Rev. *A

void LCD_Char_PrintNumber(uint16 value)

Description: Prints the decimal value of a 16-bit value as left-justified ASCII characters.

Parameters: uint16 value: The 16-bit value to be printed in ASCII characters as a decimal number.

Return Value: None

Side Effects: Because LCD_Char_PrintNumber() is implemented as a macro of
LCD_Char_PrintU32Number() to save memory then if uin32 bit value is passed to
LCD_Char_PrintNumber() it will be cut to uint16.

void LCD_Char_PrintU32Number(uint32 value)

Description: Prints an uint32 value as a left-justified decimal value.

Parameters: uint32 value: The 32-bit value to be printed in ASCII characters as a decimal number.

Return Value: None

Side Effects: None

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined: project deviations – deviations that are applicable for all
PSoC Creator components and specific deviations – deviations that are applicable only for this
component. This section provides information on component specific deviations. The project

PSoC® Creator™ Component Datasheet Character LCD

Document Number: 002-03681 Rev. *A Page 13 of 18

deviations are described in the MISRA Compliance section of the System Reference Guide
along with information on the MISRA compliance verification environment.

The Character LCD component has the following specific deviations:

MISRA-
C:2004

Rule

Rule Class
(Required/
Advisory)

Rule Description Description of Deviation(s)

19.7 R A function shall be used in
preference to a function-like
macro.

Following macros were marked obsolete:

LCD_PrintDecUint16(x), LCD_PrintHexUint8(x),
LCD_PrintHexUint16(x)

They are redefined functionality of : LCD_PrintNumber(),
LCD_PrintInt8(), LCD_PrintInt16()

They will be removed in a future version of the
component.

Also function-like macro - LCD_PrintNumber() was
made to be a macro of LCD_PrintU32Number() for
saving memory resources.

This component has the following embedded component: Pins. Refer to the corresponding
component datasheet for information on their MISRA compliance and specific deviations.

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

None 664 3 604 3 658 3

Vertical 1062 3 878 3 922 3

Horizontal 991 3 820 3 868 3

User Defined 802 3 718 3 776 3

None + Conversion
Routines

947 3 756 3 808 3

Character LCD PSoC® Creator™ Component Datasheet

Page 14 of 18 Document Number: 002-03681 Rev. *A

Functional Description

The LCD module provides a visual display for alphanumeric characters as well as limited custom
fonts. The APIs configures the PSoC device as necessary to easily interface between the
standard Hitachi LCD display driver and the PSoC device.

Note Component APIs have a timeout value that prevents dead loops on waiting for the ready
flag from the LCD module. The timeout value is about 3.2 ms.

The following table describes the LCD logical port pin to physical LCD module pin mapping. The
LCD’s Logical port can be mapped to start on the first or second physical pin of a port; it may not
span ports. That is, LogicalPort_0 could theoretically be Port 2, Pin 0 or Port 2, Pin 1. Using the
pin editor to force the LCD logical port to begin at pin 0 improves efficiency by reducing the
number of shifts required to align data for a write.

Logical Port Pin LCD Module Pin Description

LCDPort_0 DB4 Data Bit 0

LCDPort_1 DB5 Data Bit 1

LCDPort_2 DB6 Data Bit 2

LCDPort_3 DB7 Data Bit 3

LCDPort_4 E LCD Enable (strobe to confirm new data available)

LCDPort_5 RS Register Select (select data or control input data)

LCDPort_6 R/!W Read/not Write (toggle for polling the ready bit of the LCD)

Figure 2. Pin Editor Diagram

M ic ro C o n tro lle r

C o re

H ita c h i

C o m p a ta b le

L C D
-1 . V s s

-2 . V c c

-3 . V e e

-4 . R S

-5 . R /!W

-6 . E

-1 1 . D B 4

-1 2 . D B 5

-1 3 . D B 6

-1 4 . D B 7

7

+ 5 V

1 0 k

The LCD_Char_Position() function manages display addressing as follows. Row zero, column
zero is in the upper left corner with the column number increasing to the right. In a four-line

PSoC® Creator™ Component Datasheet Character LCD

Document Number: 002-03681 Rev. *A Page 15 of 18

display, writing beyond column 19 of row 0 can result in row 2 being corrupted because the
addressing maps row 0, column 20 to row 2, column 0. This is not an issue in the standard 2x16
Hitachi module.

Figure 3. 2x16 Hitachi LCD Module

Resources

The Character LCD component uses 7 I/O pins.

DC and AC Electrical Characteristics

N/A

Component Changes

This section lists the major changes in the component from the previous versions.

Version Description of Changes Reason for Changes / Impact

2.20.a Minor datasheet edits.

2.20 Added PSoC 4200L device support. New device support.

2.10.a Minor datasheet edit. Fixed a typo.

2.10 Added support for Bluetooth Low Energy
devices.

Added 3.2 ms timeout that prevents
component from a dead loop.

To fix component operation in case there are LCD
module connecting issues.

Changed description of the IsReady function. To reflect that the function polls the LCD until the
ready bit is set or a timeout occurs.

Character LCD PSoC® Creator™ Component Datasheet

Page 16 of 18 Document Number: 002-03681 Rev. *A

Version Description of Changes Reason for Changes / Impact

2.0 The issue which caused component operation
failure on CY84000 was fixed.

Issue was related to bug in the code that was
occurring only on PSoC4 CY84000. Per this issue in
the generated code the component was changing the
port configuration register with an incorrect drive
mode configuration. With the incorrect drive modes
interfacing to LCD module was impossible.

The issue which caused component failure on
PSoC4 when the LCD port was placed on pins
[7:1] was fixed.

The reason for the issue is that some internal
constants used for changing drive modes was not
adjusted by shifting for one bit.

Two new API functions were added. Added
functions are: LCD_Char_PrintU32Number();

LCD_Char_PrintInt32().

These API functions provide component with the
ability to print 32 bit decimal and hexadecimal
numbers.

Two parameters were added to
LCD_Char_WriteControl() function:

LCD_Char_DISPLAY_SCRL_LEFT (0x18) -
scroll display left;

LCD_Char_DISPLAY_SCRL_LEFT (0x1E) -
scroll display right.

1.90 Added PSoC4 support. Fixed number of type conversion issues in component
source code.

Updated datasheet with memory usage for
PSoC 4

1.80 Added MISRA Compliance section. The component has specific deviations described.

Functions LCD_PrintDecUint16(x),
LCD_PrintHexUint8(x) and
LCD_PrintHexUint16(x)

were made obsolete.

Updated API Memory Usage table.

MISRA related changes.

Following API function’s declarations were
changed:

from LCD_Char_LoadCustomFonts(uint8*
customData) to
LCD_Char_LoadCustomFonts(uint8 const
customData[]);

from LCD_Char_PrintString(const char8*
string) to LCD_Char_PrintString(char8 const
string[]).

MISRA doesn’t allow using variables as arrays when
they are declared as pointers.

In Custom Character Editor section a note
about adding and external reference to
LCD_Char_customFonts[] was removed.

LCD_Char.h file now includes
LCD_Char_customFonts[].

PSoC® Creator™ Component Datasheet Character LCD

Document Number: 002-03681 Rev. *A Page 17 of 18

Version Description of Changes Reason for Changes / Impact

1.70 Increased delays between signal transitions
when writing to the LCD display.

On the CY8CKIT-050 development board with
optimized compiler settings, the signals to the LCD
were not making full transitions.

1.60 Added characterization section to datasheet

Added all component APIs with the
CYREENTRANT keyword when they are
included in the .cyre file.APIs.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which functions
are candidates.

This change is required to eliminate compiler
warnings for functions that are not reentrant used in a
safe way: protected from concurrent calls by flags or
Critical Sections.Add the capability for customers to
specify any individual generated functions as
reentrant.

LCD_Char_DrawHorizontalBG() and
LCD_Char_DrawVerticalBG() bar graph

added to a conditional compilation.

To prevent usage of bar graph API function with
improper custom character set.

1.50.c Added instruction to datasheet to restore
default customer font set

1.50.b Removed void LCD_Char_WriteControl(uint8
command) API.

void LCD_Char_WriteControl(uint8 command) API
was described twice in the API section, so the extra
description was deleted.

Removed a note about the necessity of calling
LCD_Char_LoadCustomFonts() from the
description of LCD_Char_DrawHorizontalBG()
and LCD_Char_DrawVerticalBG() APIs.

Now there is no need to call
LCD_Char_LoadCustomFonts() prior using
LCD_Char_DrawHorizontalBG() or
LCD_Char_DrawVerticalBG() as it is done in the
component’s LCD_Char_Start() routine.

1.50.a Updated LCD_Char_WriteData(),
LCD_Char_WriteControl(), and
LCD_Char_Sleep() API's description in the
datasheet

There was no description of parameters in function
LCD_Char_WriteData(), so the appropriate
description was added. The description of
LCD_Char_Sleep() was very poor so it was updated
with more details. The description of
LCD_Char_WriteControl() were extended with details
of possible input parameter values.

Minor datasheet edits and updates

1.50 Added LCD_Char_Sleep(),
LCD_Char_Wakeup(), LCD_Char_Enable(),
LCD_Char_Init(), LCD_Char_SaveConfig(),
LCD_Char_RestoreConfig() APIs.

To support low power modes and provide common
interfaces for most components.

Added new API file - CharLCD_PM.c which
contains declaration of Sleep mode APIs.

To support low power modes.

Added a call to
LCD_Char_LoadCustomFonts() in the
LCD_Char_Init() API.

The selected custom font in the Configure dialog is
automatically loaded the first time LCD_Char_Start()
is called in the project.

Character LCD PSoC® Creator™ Component Datasheet

Page 18 of 18 Document Number: 002-03681 Rev. *A

Version Description of Changes Reason for Changes / Impact

1.40 Added an additional delay into the initialization
sequence of the LCD_Char_Start() function in
order to meet the timing requirements for the
display.

Prevents failures in initialization that were present
when running the system at high frequencies.

1.30 Replaced Digital Port component with a Pins
component in the Char LCD schematic.

Old Digital Port was deprecated and was replaced
with the new Pins component.

Added description of IsReady function. There was no mention about LCD_Char_IsReady() in
the old version of datasheet.

Deleted the function LCD_Char_DelayUS()
and replaced it with LCD_Char_CyDelay() or
LCD_Char_IsReady().

This was to address a timing issue with the
component which caused some failures.

1.20.a Added information to the component that
advertizes its compatibility with silicon
revisions.

The tool reports an error/warning if the component is
used on incompatible silicon. If this happens, update
to a revision that supports your target device.

1.20 Updated Symbol To comply with corporate standard.

1.10.a Added information to the component that
advertizes its compatibility with silicon
revisions.

The tool reports an error/warning if the component is
used on incompatible silicon. If this happens, update
to a revision that supports your target device.

1.10 Various updates from version 0.2 0.2 version was included with alpha builds, but was
not a completely functional component.

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a Character LCD

	Input/Output Connections
	LCD_Port – Pin Editor

	Component Parameters
	Parameters
	LCD Custom Character Set
	Conversion Routines

	Custom Character Editor

	Application Programming Interface
	Core Functions
	void LCD_Char_Start(void)
	void LCD_Char_Stop(void)
	void LCD_Char_DisplayOn(void)
	void LCD_Char_DisplayOff(void)
	void LCD_Char_PrintString(char8 const string[])
	void LCD_Char_PutChar(char8 character)
	void LCD_Char_Position(uint8 row, uint8 column)
	void LCD_Char_WriteData(uint8 dByte)
	void LCD_Char_WriteControl(uint8 cByte)
	void LCD_Char_ClearDisplay(void)
	void LCD_Char_IsReady(void)
	void LCD_Char_Sleep(void)
	void LCD_Char_Wakeup(void)

	void LCD_Char_Init(void)
	void LCD_Char_Enable(void)
	void LCD_Char_SaveConfig(void)
	void LCD_Char_RestoreConfig(void)

	Optional Custom Font Functions
	void LCD_Char_LoadCustomFonts(uint8 const customData[])
	void LCD_Char_DrawHorizontalBG(uint8 row, uint8 column, uint8 maxCharacters, uint8 value)
	void LCD_Char_DrawVerticalBG(uint8 row, uint8 column, uint8 maxCharacters, uint8 value)

	Optional Number to ASCII Conversion Routines
	void LCD_Char_PrintInt8(uint8 value)
	void LCD_Char_PrintInt16(uint16 value)
	void LCD_Char_PrintInt32(uint16 value)
	void LCD_Char_PrintNumber(uint16 value)
	void LCD_Char_PrintU32Number(uint32 value)

	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	Resources
	DC and AC Electrical Characteristics
	Component Changes

