

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 002-19919 Rev. ** Revised June 5, 2017

Features

 Universal Digital Block (UDB) implementation for all
devices

 Fixed-function (FF) implementation for PSoC 3 and
PSoC 5LP devices

 8-, 16-, 24-, or 32-bit timer

 Optional capture input

 Enable, trigger, and reset inputs, for synchronizing with other Components

 Continuous or one shot run modes

General Description

The Timer Component provides a method to measure intervals. It can implement a basic timer
function and offers advanced features such as capture with capture counter and interrupt/DMA
generation.

For PSoC 3 and PSoC 5LP devices, the Component can be implemented using FF blocks or
UDB. PSoC 4 devices support only the UDB implementation. A UDB implementation typically
has more features than a FF implementation. If the design is simple enough, consider using FF
and save UDB resources for other purposes.

Note For PSoC 4 devices, there is also a Timer/Counter/Pulse Width Modulator (TCPWM)
Component available for use. Refer to the TCPWM Component datasheet.

The following table shows the major feature differences between FF and UDB. There are also
many specific functional differences between the FF and UDB implementations and differences
between the FF implementation in different devices. See the Configurations section for detailed
timing waveforms for the various implementations.

Feature FF UDB

Number of bits 8 or 16 8, 16, 24, or 32

Run mode Continuous or one shot Continuous, one shot, or one shot halt on interrupt

Count mode Down only Down only

Enable input Yes (hardware or software enable) Yes (hardware or software enable)

Timer
2.80

Timer PSoC® Creator™ Component Datasheet

Page 2 of 35 Document Number: 002-19919 Rev. **

Feature FF UDB

Capture input Yes Yes

Capture mode Rising edge only Rising edge, falling edge, either edge, or software
controlled

Capture FIFO No (one capture register) Yes (up to four captures)

Trigger input No Yes

Trigger mode None Rising edge, falling edge, either edge, or software
controlled

Reset input Yes Yes

Terminal count output Yes Yes

Interrupt output Yes Yes

Interrupt conditions TC, capture TC, capture, and FIFO full

Capture output No Yes

Period register Yes Yes

Period reload Yes (always reload on reset or TC) Yes (always reload on reset or TC)

Clock input Limited to digital clocks in the clock
system

Any signal

When to Use a Timer

The default use of the Timer is to generate a periodic event or interrupt signal. However, there
are other potential uses:

 Create a clock divider by driving a clock into the clock input and using the terminal count
output as the divided clock output.

 Measure the length of time between hardware events by driving a clock into the clock
input and driving the test signal to the enable or capture input.

Note A Counter Component is better used in situations focused on counting events. A PWM
Component is better used in situations requiring multiple compare outputs with more control
features like center alignment, output kill, and dead band outputs.

A Timer is typically used to record the number of clock cycles between events. An example of
this is measuring the number of clocks between two rising edges as might be generated by a
tachometer sensor. A more complex use is to measure the period and duty cycle of a PWM
input. For PWM measurement, the Timer Component is configured to start on a rising edge,
capture the next falling edge, and then capture and stop on the next rising edge. An interrupt on
the final capture signals the CPU that all of the captured values are ready in the FIFO.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 3 of 35

Input/Output Connections

This section describes the various input and output connections for the Timer. Some I/Os may
be hidden on the symbol under the conditions listed in the description of that I/O.

Note All signals are active high unless otherwise specified.

Input
May Be
Hidden Description

clock N The clock input defines the operating frequency of the Timer Component. That is, the timer
period counter value is decremented on the rising edge of this input while the Timer
Component is enabled.

reset N This input is a synchronous reset. It requires at least one rising edge of the clock to
implement the resets of the counter value and the capture counter. It resets the period
counter to the period value and also resets the capture counter. For the fixed-function
implementation the reset signal forces the counter to load from the period register in active
mode only. Namely if timer is started by call the Timer_Start() function.

enable Y This input is the Timer hardware enable. This connection enables the period counter to
decrement on each rising edge of the clock. If this input is low the outputs are still active but
the Timer Component does not change states. This input is visible when the Enable Mode
parameter is set to Hardware Only or Software and Hardware.

capture Y The capture input captures the current count value to a capture register or FIFO. The input is
visible if the Capture Mode parameter is set to any mode other than None. Capture may
take place on a rising edge, falling edge, or either edge applied to this input, depending on
the Capture Mode setting. The capture input is sampled on the clock input. No values are
captured if the Timer is disabled. The capture input may be left floating with no external
connection. If nothing is connected to the capture line, the Component will assign it a
constant logic 0.

trigger Y The trigger input enables the timer to start counting based on configurable hardware events.
The input is visible if the Trigger Mode parameter is set to any mode other than None. It
causes the Timer to delay counting until the appropriate edge is detected. The trigger edge
is not captured nor does it generate an interrupt.

Timer PSoC® Creator™ Component Datasheet

Page 4 of 35 Document Number: 002-19919 Rev. **

Output
May Be
Hidden Description

tc N Terminal count is a synchronous output that indicates that the count value equals zero.
The output is synchronous to the clock input of the Timer. The exact timing of this output
depends on the device and whether a UDB or FF implementation is used.

interrupt N The interrupt output is driven by the interrupt sources configured in the hardware. All
sources are ORed together to create the final output signal. The sources of the interrupt
can be: Terminal Count, Capture, or FIFO full.

After an interrupt is triggered, the interrupt output remains asserted until the status
register is read.

capture_out Y The capture_out output is an indicator of when a hardware capture has been triggered.
This signal is available for the UDB implementation only. This output is synchronized to
the clock input of the Timer.

Schematic Macro Information

The default Timer in the Component Catalog is a schematic macro using a Timer Component
with default settings. It is connected to bus clock and a Logic Low Component.

Component Parameters

Drag a Timer onto your design and double-click it to open the Configure dialog.

Hardware versus Software Configuration Options

Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When setting these parameters
before build time you are setting their initial values. These may be modified at any time with the
APIs provided. Most parameters described in the next sections are hardware options. The
software options are noted as such.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 5 of 35

Configure Tab

Resolution

The Resolution parameter defines the bit-width resolution of the Timer. This value may be set to
8, 16, 24, or 32 for maximum count values of 255, 65535, 16777215, and 4294967295
respectively. For FF implementations, the resolution is limited to 8 or 16 bits.

Implementation

The Implementation parameter allows you to choose between a fixed-function block
implementation and a UDB implementation of the Timer. If FF is selected, UDB functions are
disabled.

Period (Software Option)

The Period parameter defines the period of the counter. The max count value (or rollover point)
for the Timer Component is equal to the Period minus one. The Period minus one is the initial
value loaded into the period register. The software can change this register at any time with the
Timer_WritePeriod() API. To get the equivalent result using this API, the Period value from the
customizer, minus one, must be used as the argument in the function.

The limits of this value are defined by the Resolution parameter. For 8-, 16-, 24-, and 32-bit
Resolution, the Period is: 2^8, 2^16, 2^24, and 2^32 or 256, 65536, 16777216, and
4294967296 respectively.

Timer PSoC® Creator™ Component Datasheet

Page 6 of 35 Document Number: 002-19919 Rev. **

Trigger Mode (Software Option)

The Trigger Mode parameter configures the implementation of the trigger input. This parameter
is only active when Implementation is set to UDB.

Trigger Mode can be set to any of the following values:

 None (default) – No trigger implemented and the trigger input pin is hidden

 Rising Edge – Trigger (enable) counting on the first rising edge of the trigger input

 Falling Edge – Trigger (enable) counting on the first falling edge of the trigger input

 Either Edge – Trigger (enable) counting on the first edge (rising or falling) of the trigger
input

 Software Controlled – The trigger mode can be set during run time, to one of the four
trigger modes listed above, using the Timer_SetTriggerMode() API call. The default
trigger is None until another value is set using this API.

Capture Mode (Software Option)

The Capture Mode section contains three parameters: Capture Mode Value, Enable Capture
Counter, and Capture Count.

Capture Mode

The Capture Mode parameter configures when a capture takes place. The capture input is
sampled on the rising edge of the clock input. This mode can be set to any of the following
values (for the fixed-function implementation, only None and Rising Edge are available):

 None – No capture implemented and the capture input pin is hidden

 Rising Edge – Capture the counter value on a rising edge of the capture input with
respect to the clock input.

 Falling Edge – Capture the counter value on a falling edge of the capture input with
respect to the clock input.

 Either Edge – Capture the counter value on either edge of the capture input with respect
to the clock input.

 Software Controlled – The capture mode can be set during run time, to one of the four
capture modes listed above, using the Timer_SetCaptureMode() API call. The default
trigger is None until another value is set using this API.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 7 of 35

Enable Capture Counter (Software Option)

The Enable Capture Counter parameter is used to define how many capture events happen
before the counter is actually captured. For example, it may be necessary to capture every third
event, in which case the capture counter must be set to a value of 3. This parameter is only
available for a UDB implementation.

Capture Count (Software Option)

The Capture Count parameter sets the initial number of capture events that occur before the
counter is actually captured. It can be set to a value from 2 to 127. The capture count value may
be modified at run time by calling the API function Timer_SetCaptureCount(). This parameter is
only available for a UDB implementation.

Enable Mode

The Enable Mode parameter configures the enable implementation of the Timer. The enable
input is sampled on the rising edge of the clock input. This mode can be set to any of the
following values:

 Software Only – The Timer is enabled based on the enable bit of the control register
only.

 Hardware Only – The Timer is enabled based on the enable input only. (UDB only)

 Software and Hardware – The Timer is enabled if both hardware and software enables
are true.

Run Mode

The Run Mode parameter is used to configure the Timer Component to run continuously or in a
one-shot mode:

 Continuous – The Timer runs continuously while it is enabled.

 One Shot – The Timer starts counting and stops counting when zero is reached. After it is
reset, it begins another cycle. On stop, it reloads Period into the count register.

 One Shot (Halt on Interrupt) – The Timer starts counting and stops counting when zero
is reached or an interrupt occurs. After it is reset, it begins another cycle. On stop, for a
UDB Timer, it reloads Period into the count register (UDB only).

Note In order to be sure that One Shot mode does not start prematurely, use a Trigger Mode to
control the start time, or use some form of software enable mode (Software Only or Software
and Hardware).

Timer PSoC® Creator™ Component Datasheet

Page 8 of 35 Document Number: 002-19919 Rev. **

Interrupt (Software Option)

The Interrupt parameters is used to configure the initial interrupt sources. An interrupt is
generated when one or more of the following selected events occur. The software can
reconfigure this mode at any time; this parameter defines an initial configuration.

 On TC –This parameter is always active; it is cleared by default.

 On Capture (1-4) – Allows you to interrupt on a given number of captures; it is cleared by
default.

 On FIFO Full – Allows you to interrupt when the capture FIFO is full; it is cleared by
default.

Clock Selection

Fixed-Function Components

When configured to use the FF block in the device, the Timer Component has the following
restrictions:

 The clock input must be a digital clock from the clock system.

 If the frequency of the clock is to be the same as bus clock, then the clock must actually
be the bus clock.

Open the Configure dialog of the appropriate Clock Component to configure the Clock Type
parameter as Existing and the Source parameter as BUS_CLK. A clock at this frequency
cannot be divided from any other source, such as the master clock, IMO, and so on.

For UDB-based Components

Any digital signal from any source can be connected to the clock input. The frequency of that
signal is limited to the frequency range defined in the DC and AC Electrical Characteristics (UDB
Implementation) section of this datasheet.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 9 of 35

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the Component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “Timer_1” to the first instance of a
Component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“Timer”.

Functions

Function Description

Timer_Start() Sets the initVar variable, calls the Timer_Init() function, and then calls the Enable
function.

Timer_Stop() Disables the Timer.

Timer_SetInterruptMode() Enables or disables the sources of the interrupt output.

Timer_ReadStatusRegister() Returns the current state of the status register.

Timer_ReadControlRegister() Returns the current state of the control register.

Timer_WriteControlRegister() Sets the bit-field of the control register.

Timer_WriteCounter() Writes a new value directly into the counter register. (UDB only)

Timer_ReadCounter() Forces a capture, and then returns the capture value.

Timer_WritePeriod() Writes the period register.

Timer_ReadPeriod() Reads the period register.

Timer_ReadCapture() Returns the contents of the capture register or the output of the FIFO.

Timer_SetCaptureMode() Sets the hardware or software conditions under which a capture will occur.

Timer_SetCaptureCount() Sets the number of capture events to count before capturing the counter register
to the FIFO.

Timer_ReadCaptureCount() Reports the current setting of the number of capture events.

Timer_SoftwareCapture() Forces a capture of the counter to the capture FIFO

Timer_SetTriggerMode() Sets the hardware or software conditions under which a trigger will occur.

Timer_EnableTrigger() Enables the trigger mode of the timer.

Timer_DisableTrigger() Disables the trigger mode of the timer.

Timer_SetInterruptCount() Sets the number of captures to count before an interrupt is triggered.

Timer_ClearFIFO() Clears the capture FIFO.

Timer PSoC® Creator™ Component Datasheet

Page 10 of 35 Document Number: 002-19919 Rev. **

Function Description

Timer_Sleep() Stops the Timer and saves its current configuration.

Timer_Wakeup() Restores the Timer configuration and re-enables the Timer.

Timer_Init() Initializes or restores the Timer per the Configure dialog settings.

Timer_Enable() Enables the Timer.

Timer_SaveConfig() Saves the current configuration of the Timer.

Timer_RestoreConfig() Restores the configuration of the Timer.

void Timer_Start(void)

Description: This is the preferred method to begin Component operation. Timer_Start() sets the initVar
variable, calls the Timer_Init() function, and then calls the Timer_Enable() function.

Side Effects: If the initVar variable is already set, this function only calls the Timer_Enable() function.

void Timer_Stop(void)

Description: For fixed-function implementations this disables the Timer and powers it down. For UDB
implementations the Timer is disabled only in software enable modes.

Side Effects: Because fixed-function Timers are powered down by this function, the TC output will be driven
low.

void Timer_SetInterruptMode(uint8 interruptMode)

Description: Enables or disables the sources of the interrupt output.

Parameters: uint8: Interrupt sources. For bit definitions, refer to the

Mode Register section of this datasheet.

Side Effects: The bit locations are different between FF and UDB. Mask #defines are provided to
encapsulate the differences.

uint8 Timer_ReadStatusRegister(void)

Description: Returns the current state of the status register.

Return Value: uint8: Current status register value

For bit definitions, refer to the Status Register section of this datasheet.

Side Effects: Some of these bits are cleared when status register is read. Clear-on-read bits are defined in
the Status Register section of this datasheet.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 11 of 35

uint8 Timer_ReadControlRegister(void)

Description: Returns the current state of the control register. This API is not available in the special case
when the control register is not required (UDB implementation, enable mode is hardware
only, capture mode not software controlled, and trigger mode not software controlled).

Return Value: uint8: Control register bit field

For bit definitions, refer to the Control Register section of this datasheet.

void Timer_WriteControlRegister(uint8 control)

Description: Sets the bit field of the control register. This API is not available in the special case when the
control register is not required (UDB implementation, enable mode is hardware only, capture
mode not software controlled, and trigger mode not software controlled).

Parameters: uint8: Control register bit field

For bit definitions, refer to the Control Register section of this datasheet.

void Timer_WriteCounter(uint8/16/32 counter)

Description: Writes a new value directly into the counter register. This function is available only for the
UDB implementation.

Parameters: uint8/16/32: New counter value. For 24-bit Timers, the parameter is uint32.

Side Effects: Overwrites the counter value. This can cause undesired behavior on the terminal count
output or period width. This is not an atomic write and the function may be interrupted. The
Timer should be disabled before calling this function.

uint8/16/32 Timer_ReadCounter(void)

Description: Forces a capture and then returns the capture value.

Return Value: uint8/16/32: Current counter value. For 24-bit Timers, the return type is uint32.

Side Effects: Returns the contents of the capture register or the output of the FIFO (UDB only).

void Timer_WritePeriod(uint8/16/32 period)

Description: Writes the period register.

Parameters: uint8/16/32: New period value. For 24-bit Timers, the parameter is uint32.

Side Effects: The period of the Timer does not change until the counter is reloaded from the period
register.

Timer PSoC® Creator™ Component Datasheet

Page 12 of 35 Document Number: 002-19919 Rev. **

uint8/16/32 Timer_ReadPeriod(void)

Description: Reads the period register.

Return Value: uint8/16/32: Current period value. For 24-bit Timers, the return type is uint32.

uint8/16/32 Timer_ReadCapture(void)

Description: Returns the contents of the capture register or the output of the FIFO (UDB).

Return Value: uint8/16/32: Current capture value. For 24-bit Timers, the return type is uint32.

Side Effects: In the UDB implementation, the value is removed from the FIFO.

void Timer_SetCaptureMode(uint8 captureMode)

Description: Sets the capture mode. This function is available only for the UDB implementation and when
the Capture Mode parameter is set to Software Controlled.

Parameters: uint8: Enumerated capture mode. Refer also to the Control Register section:

Timer__B_TIMER__CM_NONE

Timer__B_TIMER__CM_RISINGEDGE

Timer__B_TIMER__CM_FALLINGEDGE

Timer__B_TIMER__CM_EITHEREDGE

Timer__B_TIMER__CM_SOFTWARE

void Timer_SetCaptureCount(uint8 captureCount)

Description: Sets the number of capture events to count before a capture is performed. This function is
available only for the UDB implementation and when the Enable Capture Counter
parameter is selected in the Configure dialog.

Parameters: uint8 captureCount: The number of capture events you want to count before capturing the
counter value to the capture FIFO. A value from 2 to 127 is valid.

uint8 Timer_ReadCaptureCount(void)

Description: Reads the current value setting for the captureCount parameter as set in the
Timer_SetCaptureCount() function. This function is only available for the UDB
implementation and when the Enable Capture Counter parameter is selected in the
Configure dialog.

Return Value: uint8: Current capture count

void Timer_SoftwareCapture(void)

Description: Forces a software capture of the current counter value to the FIFO. This function is available
only for UDB implementation.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 13 of 35

void Timer_SetTriggerMode(uint8 triggerMode)

Description: Sets the trigger mode. This function is available only for UDB implementation and when
Trigger Mode parameter is set to Software Controlled.

Parameters: uint8: Enumerated capture mode. Refer also to the Control Register section.

Timer__B_TIMER__TM_NONE

Timer__B_TIMER__TM_RISINGEDGE

Timer__B_TIMER__TM_FALLINGEDGE

Timer__B_TIMER__TM_EITHEREDGE

Timer__B_TIMER__TM_SOFTWARE

void Timer_EnableTrigger(void)

Description: Enables the trigger. This function is available only when Trigger Mode is set to Software
Controlled.

void Timer_DisableTrigger(void)

Description: Disables the trigger. This function is available only when Trigger Mode is set to Software
Controlled.

void Timer_SetInterruptCount(uint8 interruptCount)

Description: Sets the number of captures to count before an interrupt is generated for the
InterruptOnCapture source. This function is available only when InterruptOnCaptureCount is
enabled.

Parameters: uint8 interruptCount: The number of capture events to count before the interrupt on capture
is generated. A value from 0 to 3 is valid.

void Timer_ClearFIFO(void)

Description: Clears the capture FIFO. This function is available only for the UDB implementation. Refer to
the UDB FIFOs section of this datasheet.

Timer PSoC® Creator™ Component Datasheet

Page 14 of 35 Document Number: 002-19919 Rev. **

void Timer_Sleep(void)

Description: This is the preferred routine to prepare the Component for sleep. Timer_Sleep() saves the
current Component state. Then it calls the Timer_Stop() function and calls
Timer_SaveConfig() to save the hardware configuration.

Call the Timer_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power-management functions.

Side Effects: For the FF implementation, all registers are retained across low-power modes. For the UDB
implementation, the control register and counter value register are saved and restored.
Additionally when calling Timer_Sleep(), the enable state is stored in case you call
Timer_Sleep() without calling Timer_Stop().

void Timer_Wakeup(void)

Description: This is the preferred routine to restore the Component to the state when Timer_Sleep() was
called. The Timer_Wakeup() function calls the Timer_RestoreConfig() function to restore the
configuration. If the Component was enabled before the Timer_Sleep() function was called,
the Timer_Wakeup() function also re-enables the Component.

Side Effects: Calling the Timer_Wakeup() function without first calling the Timer_Sleep() or
Timer_SaveConfig() function may produce unexpected behavior.

void Timer_Init(void)

Description: Initializes or restores the Component according to the customizer Configure dialog settings.
It is not necessary to call Timer_Init() because the Timer_Start() routine calls this function
and is the preferred method to begin Component operation..

Side Effects: All registers will be set to values according to the customizer Configure dialog.

void Timer_Enable(void)

Description: Activates the hardware and begins Component operation. It is not necessary to call
Timer_Enable() because the Timer_Start() routine calls this function, which is the preferred
method to begin Component operation. This function enables the Timer for either of the
software controlled enable modes.

Side Effects: If the Enable Mode parameter is set to Hardware Only, this function has no effect on the
operation of the Timer.

void Timer_SaveConfig(void)

Description: This function saves the Component configuration and nonretention registers. It also saves
the current Component parameter values, as defined in the Configure dialog or as modified
by appropriate APIs. This function is called by the Timer_Sleep() function.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 15 of 35

void Timer_RestoreConfig(void)

Description: This function restores the Component configuration and nonretention registers. It also
restores the Component parameter values to what they were before calling the
Timer_Sleep() function.

Side Effects: Calling this function without first calling the Timer_Sleep() or Timer_SaveConfig() function
may produce unexpected behavior.

Global Variables

Variable Description

Timer_initVar Indicates whether the Timer has been initialized. The variable is initialized to 0 and set to 1 the first
time Timer_Start() is called. This allows the Component to restart without reinitialization after the
first call to the Timer_Start() routine.

If reinitialization of the Component is required, then the Timer_Init() function can be called before
the Timer_Start() or Timer_Enable() function.

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator Components

 specific deviations – deviations that are applicable only for this Component

This section provides information on Component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The Timer Component does not have any specific deviations.

API Memory Usage

The Component memory usage varies significantly, depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

Timer PSoC® Creator™ Component Datasheet

Page 16 of 35 Document Number: 002-19919 Rev. **

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration[1]

PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

Flash

Bytes

SRAM

Bytes

8-bit UDB Timer 255 5 440 5 448 5

8-bit FF Timer 264 2 N/A N/A 376 2

16-bit UDB Timer 296 6 440 7 448 7

16-bit FF Timer 266 2 N/A N/A 380 2

24-bit UDB Timer 286 8 448 7 456 13

32-bit UDB Timer 286 8 440 13 448 13

8-bit UDB Timer One Shot 255 5 440 5 444 5

16-bit UDB Timer One Shot 296 6 440 7 448 7

Functional Description

As described previously, the Timer Component can be configured for multiple uses. This section
describes those configurations in more detail.

General Operation

On each rising edge of the clock input, the Timer Component always counts down. It reloads the
counter register from the period register on the next clock edge after the counter reaches a value
of zero.

The timer remains disabled until enabled by hardware or software, depending on the
configuration setting. The Component cannot be used until Timer_Start() is called because this
function sets the registers for the defined configuration.

Timer Outputs

The counter register can be monitored and reloaded. The tc output is available to monitor the
current value of the counter register; it is asserted for 1 clock cycle when the counter is zero.

1. For all configurations the common settings are: Enable mode = Software only, Capture mode = None,
Interrupt = On TC

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 17 of 35

Timer Inputs

A capture operation can be done in either hardware or firmware. The current value in the counter
register is copied into either a capture register or a FIFO. Firmware can then read the captured
value at a later time.

Reset and enable features allow the Timer Component to be synchronized to other Components.
The Timer Component counts only when enabled and not held in reset. Counting can also be
initiated on a trigger input event. It can be reset or enabled by either hardware or firmware. All
triggering is hardware.

Note All of the inputs for the FF Timer implementations (capture, reset, and enable) are double
synchronized in the FF Timer. The synchronizer is run at BUS_CLK speed. This results in a
delay between when these signals are applied and when they take effect. The delay depends on
the ratio between BUS_CLK and the clock that runs the Timer. All waveforms shown for the FF
implementations show the signal after it has been synchronized.

Timer Interrupt

An interrupt output is available to communicate event occurrences to the CPU or to other
Components. You can set the interrupt to be active on a combination of one or more events. You
should design the interrupt handler carefully so that you can determine the source of the interrupt
and whether it is edge- or level-sensitive, and clear the source of the interrupt.

Timer Registers

There are three registers: mode, status, and control. Refer to the Registers section.

Timer PSoC® Creator™ Component Datasheet

Page 18 of 35 Document Number: 002-19919 Rev. **

Configurations

Default Configuration

When you drag a Timer Component onto a PSoC Creator schematic, the default configuration is
an 8-bit, FF timer that decrements the counter register on a rising edge at the clock input.
Figure 1 shows the default schematic macro and Configure dialog settings.

Figure 1. Default Timer Configuration

The exact functionality of this timer differs for different implementations. The following figures
show the functionality of this timer with the UDB implementation and for the FF implementation.

The functionality of the default configuration when configured for the UDB implementation is
shown in Figure 2.

The counter is preloaded during Timer configuration and it is reloaded each time the counter
reaches zero. In the default configuration, the Period is set to 256. This results in 0xFF being
loaded into the counter because counting from 0xFF through 0 yields a period of 256.

The reset signal forces the counter to reload from its period register. The counter is held at this
state until the reset signal is removed.

Terminal count indicates that the timer has counted down to zero. It is active on the clock cycle
that follows the clock cycle where the count value has reached zero. The terminal count signal is
not generated based on a reset event.

By default, the capture functionality is configured to capture on every rising edge of the capture
input. Regardless of the width of the capture pulse, a single value is captured. In this example,
the values 0xFE and 0x01 are captured and can be read by the CPU.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 19 of 35

Figure 2. Default UDB Timer Implementation Example Waveform

clock

reset

tc

capture

count 0xFF 0xFE 0xFD 0xFC 0xFE 0xFF 0x00 0x01 0xFD 0xFF 0xFE

The functionality of the default configuration when configured for the fixed-function
implementation on PSoC 3/PSoC 5LP is shown in Figure 3.

For the fixed-function implementations, the counter value is not preloaded during configuration
time; instead, the counter starts with a value of zero. For PSoC 3/PSoC 5LP this results in a
three-cycle initial lag time for the FF implementation versus the UDB implementation. This is a
two-cycle delay before the Timer starts counting and one cycle to load the counter from the
period register. After the Timer is running, the period is the same as the UDB implementation.

The reset signal forces the counter to load from the period register and remain at that count until
reset is removed. Once reset is removed, there is a two-cycle lag before the counter begins
counting down.

Terminal count indicates that the timer has counted down to zero. It is active on the clock cycle
that follows the clock cycle where the count value has reached zero. The terminal count signal is
not generated based on a reset event or because of the initial counter value of zero.

By default, the capture functionality is configured to capture on every rising edge of the capture
input. Regardless of the width of the capture pulse, a single value is captured. In this example,
the values 0xFF and 0x01 are captured and can be read by the CPU. This functionality is the
same as the UDB implementation.

Timer PSoC® Creator™ Component Datasheet

Page 20 of 35 Document Number: 002-19919 Rev. **

Figure 3. Default PSoC 3/PSoC 5LP FF Timer Implementation Example Waveform

clock

reset

tc

capture

count
0x00 0xFF 0xFE 0xFF 0x00 0x01 0xFD 0xFF 0xFE

Software and Hardware Enable Configuration

The functionality of the hardware enable varies based on the specific implementation. The
functionality of the Timer when configured for Software and Hardware enable with the UDB
implementation is shown in Figure 4.

The counter is decremented on every cycle when the Timer is enabled. During the cycle when
the counter is reloaded from its period register, a single cycle terminal count pulse is generated.
The TC signal will always be a single clock cycle pulse. Note that it occurs during the reload
cycle. If the reload is delayed because the counter was disabled as it hit a zero count, the TC
pulse is also delayed until the counter is re-enabled and the counter is reloaded. If the counter is
forced to reload because of a reset signal, the TC pulse is not generated.

Figure 4. SW and HW Enable UDB Timer Implementation Example Waveform

clock

enable

tc

count 3 2 3 0 1 2 1 0 3 2

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 21 of 35

The functionality of the Timer when configured for Software and Hardware enable with the
PSoC 3/PSoC 5LP FF implementation is shown in Figure 5.

There is a two-clock-cycle lag between the hardware enable and the effective enable of the
counter. The result is that the counter decrements if the enable signal two clock cycles earlier
was high. This lag applies for both enabling and disabling the counter. During the cycle when the
counter is reloaded from its period register, a single-cycle terminal count pulse is generated. The
TC signal is always a single clock cycle pulse.

Note If the Timer has the enable signal low during the two cycles before the counter reaches
zero, the TC output pulse is not generated for this period of the Timer. When the Timer is re-
enabled it is reloaded without the generation of the TC signal. This is shown in the example
waveform.

Figure 5. SW and HW Enable PSoC 3/PSoC 5LP FF Timer Implementation Example
Waveform

clock

enable

tc

count 0 3 2 1 3 0 0 2 31

One Shot Configuration

The functionality of the One Shot Run Mode varies based on the specific implementation. The
functionality of the Timer when configured for One Shot operation with the UDB implementation
is shown in Figure 6.

There is a one-clock-cycle lag between the hardware enable and the effective enable of the
counter. The result is that the counter decrements if the enable signal one clock cycle earlier was
high. This lag applies for both enabling and disabling the counter. This is a different behavior
than in Continuous Run Mode, which counts without lag.

The TC signal is always a single-clock-cycle pulse. Note that it occurs during the reload cycle. If
the reload is delayed because the counter was disabled as it hit a zero count, the TC pulse is
also delayed until the counter is re-enabled and the counter is reloaded. If the counter is forced
to reload because of a reset signal, the TC pulse is not generated.

After the One Shot period has completed, the Timer can be set up to run for another period by
using a hardware reset. The hardware reset reloads the counter from the period register. One

Timer PSoC® Creator™ Component Datasheet

Page 22 of 35 Document Number: 002-19919 Rev. **

cycle after reset is removed, the Timer is enabled to count down again after the hardware enable
is also active.

Figure 6. One Shot Operation UDB Timer Implementation Example Waveform

clock

enable

tc

count 3 2 3 0 1

reset

 2 1

The functionality of the Timer when configured for One Shot operation with the FF
implementation on PSoC 3/PSoC 5LP is shown in Figure 7.

There is a two-clock-cycle lag between the hardware enable and the effective enable of the
counter. The result is that the counter decrements if the enable signal two clock cycles earlier
was high. This lag applies for both enabling and disabling the counter. During the cycle when the
counter is reloaded from its period register, a single-cycle terminal count pulse is generated. The
TC signal is always a single-clock-cycle pulse. This is identical to the operation in Continuous
Run Mode.

An extra feature of the One Shot mode, for this implementation only, is that once the Timer starts
counting, the first time that the enable signal goes low stops the counter at that value. To start
counting again, the Timer must be reset.

After the One Shot period has completed or it has stopped because of the enable signal being
disabled, the Timer can be set up to run for another period by using a hardware reset. The
hardware reset reloads the counter from the period register. There is a two-cycle lag from
releasing reset until the Timer is enabled to count down again.

Note For this implementation, only the Timer can be restarted by using the Timer_Stop() API
followed by the Timer_Start() API. This allows the counter to continue to count, but it does not
reload the counter value, so this method only should be used in the case where the counter has
already completed a period and been reloaded.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 23 of 35

Figure 7. One Shot Operation FF PSoC 3/PSoC 5LP Timer Implementation Example
Waveform

clock

enable

tc

count
0 3 3 2

reset

 2 1 0 3

UDB FIFOs

The UDB datapath FIFOs are used to capture the counter value. Each FIFO is four bytes deep.
For multi-byte configurations, each byte of the counter is captured simultaneously in the FIFO of
the associated UDB. Therefore, up to four captures can be done before the CPU must read the
capture register to avoid losing data.

If the FIFO is full, and subsequent writes occur (overflow), the new data overwrites the front of
the FIFO (the data currently being output, the next data to read).

32-bit
24-bit

16-bit
8-bit

44

88

4-byte FIFO

33

77

4-byte FIFO

22

66

4-byte FIFO

11

55

4-byte FIFO

DP8

CC

DP8

BB

DP8

AA

DP8

99

Capture Value #1 = 0x44332211

Capture Value #2 = 0x88776655

Accumulator = 0xCCBBAA99

Timer PSoC® Creator™ Component Datasheet

Page 24 of 35 Document Number: 002-19919 Rev. **

DMA Support

The Timer Component supports Direct Memory Access (DMA) transfers. The Component may
transfer to/from the following sources.

Name of DMA Source /
Destination

Length Direction DMA Req
Signal

DMA Req
Type

Description

Timer_1_PERIOD_LSB_PTR 8/16/32-bit depending on
Resolution for UDB or 16-
bit for FF implementation

Destination tc Derived Writes new
value to the
period register

Registers

Status Register

The status register is a read-only register that contains the status bits defined for the Timer. Use
the Timer_ReadStatusRegister() function to read the status register value. All operations on the
status register must use the following defines for the bit fields because these bit fields may be
different between FF and UDB implementations.

Some bits in the status register are sticky, meaning that after they are set to 1, they retain that
state until they are cleared when the register is read. The status data is registered at the input
clock edge of the Timer, which gives all sticky bits the timing resolution of the Timer. All
nonsticky bits are transparent and read directly from the inputs to the status register.

Timer_Status (UDB Implementation)

Bits 7 6 5 4 3 2 1 0

Name RSVD RSVD RSVD RSVD FIFO Not
Empty

FIFO Full Capture TC

Sticky N/A N/A N/A N/A FALSE FALSE TRUE TRUE

Timer_Status (Fixed Function Implementation)

Bits 7 6 5 4 3 2 1 0

Name TC Capture RSVD RSVD RSVD RSVD RSVD RSVD

Sticky TRUE TRUE N/A N/A N/A N/A N/A N/A

Bit Name #define in header file Description

TC Timer_STATUS_TC This bit goes to 1 when the counter value is equal to zero.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 25 of 35

Bit Name #define in header file Description

Capture Timer_STATUS_CAPTURE This bit goes to 1 whenever a valid capture event is triggered.
This does not include software capture.

FIFO Full Timer_STATUS_FIFOFULL This bit goes to 1 when the UDB FIFO reaches the full state
defined as four entries.

FIFO Not Empty Timer_STATUS_FIFONEMP This bit goes to 1 when the UDB FIFO contains at least one
entry.

Mode Register

The mode register is a read/write register that contains the interrupt mask bits defined for the
counter. Use the Timer_SetInterruptMode() function to set the mode bits. All operations on the
mode register must use the following defines for the bit fields because these bit fields may be
different between FF and UDB implementations.

The Timer Component interrupt output is an OR function of all interrupt sources. Each source
can be enabled or masked by the corresponding bit in the mode register.

Timer_Mode (UDB Implementation)

Bits 7 6 5 4 3 2 1 0

Name RSVD RSVD RSVD RSVD RSVD FIFO Full Capture TC

Timer_Mode (Fixed-Function Implementation)

Bits 7 6 5 4 3 2 1 0

Name RSVD RSVD RSVD RSVD TC Capture RSVD RSVD

Bit Name #define in header file Enables Interrupt Output On

TC Timer_STATUS_TC_INT_MASK Counter register equals 0

Capture Timer_STATUS_CAPTURE_INT_MASK Capture

FIFO Full Timer_STATUS_FIFOFULL_INT_MASK UDB FIFO full

Timer PSoC® Creator™ Component Datasheet

Page 26 of 35 Document Number: 002-19919 Rev. **

Control Register

The Control register is used to control the general operation of the counter. This register is
written with the Counter_WriteControlRegister() function call and read with the
Counter_ReadControlRegister() function. All operations on the control register must use the
following defines for the bit fields as these bit fields may be different between FF and UDB
implementations.

Note When writing to the control register, you must not change any of the reserved bits. All
operations must be read-modify-write with the reserved bits masked.

Timer_Control (UDB Implementation)

Bits 7 6 5 4 3 2 1 0

Name Enable Capture Mode [1:0] Trigger
Enable

Trigger Mode [1:0]

Interrupt Count [1:0]

Timer_Control1 (Fixed-Function Implementation)

Bits 7 6 5 4 3 2 1 0

Name RSVD RSVD RSVD RSVD RSVD RSVD RSVD Enable

Bit Name #define in header file Description / Enumerated Type

Interrupt
Count

Timer_CTRL_INTCNT_MASK The interrupt count bits define the number of capture events to
count before an interrupt is fired.

Trigger
Mode

Timer_CTRL_TRIG_MODE_MASK The trigger mode control bits define the expected trigger input
functionality. This bit field is configured at initialization with the
trigger mode defined in the Trigger Mode parameter.

 Timer__B_TIMER__TM_NONE

 Timer__B_TIMER__TM_RISINGEDGE

 Timer__B_TIMER__TM_FALLINGEDGE

 Timer__B_TIMER__TM_EITHEREDGE

 Timer__B_TIMER__TM_SOFTWARE

Trigger
Enable

Timer_CTRL_TRIG_EN The Trigger Enable bit allows for software control of when to
prepare for a trigger event.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 27 of 35

Bit Name #define in header file Description / Enumerated Type

Capture
Mode

Timer_CTRL_CAP_MODE_MASK The capture mode control bits are a two-bit field used to define
the expected capture input operation. This bit field is configured
at initialization with the capture mode defined in the
Capture Mode parameter.

 Timer__B_TIMER__CM_NONE

 Timer__B_TIMER__CM_RISINGEDGE

 Timer__B_TIMER__CM_FALLINGEDGE

 Timer__B_TIMER__CM_EITHEREDGE

 Timer__B_TIMER__CM_SOFTWARE

Enable Timer_CTRL_ENABLE Enables counting under software control. This bit is valid only if
the Enable Mode parameter is set to Software Only or
Software and Hardware.

Counter (8-, 16-, 24-, or 32-bit Based on Resolution)

The counter register contains the current counter value. This register is decremented in
response to the rising edge of all clock inputs. This register may be read at any time with the
Timer_ReadCounter() function call.

Capture (8-, 16-, 24-, or 32-bit Based on Resolution)

The capture register contains the captured counter value. Any capture event copies the counter
register to this register. In the UDB implementation, this register is actually a FIFO. See the UDB
FIFOs section for details.

Period (8-, 16-, 24-, or 32-bit Based on Resolution)

The period register contains the period value set with the Timer_WritePeriod() function call and
defined by the Period parameter at initialization. The period register is copied into the counter
register on a reload event.

Timer PSoC® Creator™ Component Datasheet

Page 28 of 35 Document Number: 002-19919 Rev. **

Component Debug Window

The Timer Component supports the PSoC Creator Component debug window. The following
registers are displayed in the debug window. Some registers are available in the UDB
implementation (indicated by *) and some registers are only available in the fixed-function
Implementation (indicated by **). All other registers are available for either configuration.

Register: Timer_CONTROL

Name: Control Register

Description: Refer to the Timer_Control register description earlier in this datasheet for bit-field definitions.

Register: Timer_CONTROL2 **

Name: Fixed-Function Control Register #2

Description: The fixed-function Timer block has a second configuration register. Refer to the Technical
Reference Manual for bit field definitions.

Register: Timer_STATUS_MASK *

Name: Status Register Interrupt Mask Configuration

Description: Allows you to enable any status bit as an interrupt source at the interrupt output pin of the
Component. Refer to the Timer_Status register description earlier in this datasheet for one-to-
one correlation of bit-field definitions.

Register: Timer_STATUS_AUX_CTRL *

Name: Auxiliary Control Register for the Status Register

Description: Allows you to enable the interrupt output of the internal status register through the bit field
INT_EN. Refer to the Technical Reference Manual for bit-field definitions.

Register: Timer_PERIOD

Name: Timer Period Register

Description: Defines the period value reloaded into the period counter at the beginning of each cycle of the
Timer.

Register: Timer_COUNTER

Name: Timer Counter Register

Description: Indicates the current counter value (in clock cycles from Period down to zero) of the current
timer period cycle.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 29 of 35

Register: Timer_GLOBAL_ENABLE **

Name: Fixed Function Timer Global Enable Register

Description: Enables the Fixed-Function Timer for operation. Refer to the Technical Reference Manual for
bit-field definitions.

Resources

The Timer Component is placed in the device based on the Implementation parameter. If it is
set to Fixed Function, this Component uses a FF counter/timer block. If it is set to UDB, the
Component uses the following resources.

Configuration[2]

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

8-bit UDB Timer Trigger
mode = Rising edge

1 6 1 1 – –

16-bit UDB Timer Trigger
mode = Rising edge

2 6 1 1 – –

24-bit UDB Timer Trigger
mode = Rising edge

3 6 1 1 – –

32-bit UDB Timer Trigger
mode = Rising edge

4 6 1 1 – –

8-bit UDB Timer One Shot
Trigger mode = Rising edge

1 9 1 1 – –

16-bit UDB Timer One Shot
Trigger mode = Rising edge

2 9 1 1 – –

2. For all configurations the common settings are: Enable mode = Software only, Capture mode = None, Interrupt =
On TC

Timer PSoC® Creator™ Component Datasheet

Page 30 of 35 Document Number: 002-19919 Rev. **

DC and AC Electrical Characteristics PSoC 3
(FF Implementation)

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics

Parameter Description Conditions Min Typ Max Units

 16-bit timer block current
consumption

Input clock frequency – 3 MHz – 15 – μA

 Input clock frequency –12 MHz – 60 – μA

 Input clock frequency – 48 MHz – 260 – μA

 Input clock frequency – 67 MHz – 350 – μA

AC Characteristics

Parameter Description Conditions Min Typ Max Units

 Operating frequency DC – 67.01 MHz

 Capture pulse width (internal) 15 – – ns

 Capture pulse width (external) 30 – – ns

 Timer resolution 15 – – ns

 Enable pulse width 15 – – ns

 Enable pulse width (external) 30 – – ns

 Reset pulse width 15 – – ns

 Reset pulse width (external) 30 – – ns

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 31 of 35

DC and AC Electrical Characteristics for PSoC 5LP
(FF Implementation)

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 2.7 V to 5.5 V, except where noted.

DC Characteristics

Parameter Description Conditions Min Typ Max Units

 16-bit timer block current consumption Input clock frequency – 3 MHz – 65 – μA

Input clock frequency –12 MHz – 170 – μA

Input clock frequency – 48 MHz – 650 – μA

Input clock frequency – 67 MHz – 900 – μA

AC Characteristics

Parameter Description Conditions Min Typ Max[3] Units

 Operating frequency DC – 80.01 MHz

 Capture pulse width (internal) 15 – – ns

 Capture pulse width (external) 30 – – ns

 Timer resolution 15 – – ns

 Enable pulse width 15 – – ns

 Enable pulse width (external) 30 – – ns

 Reset pulse width 15 – – ns

 Reset pulse width (external) 30 – – ns

3 Refer to the device-specific datasheet to determine the maximum frequency for a particular device.

Timer PSoC® Creator™ Component Datasheet

Page 32 of 35 Document Number: 002-19919 Rev. **

DC and AC Electrical Characteristics (UDB Implementation)

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics

Parameter Description[4] Min Typ[5] Max Units

IDD Component current consumption

8-bits UDB, Continuous, Trigger = None – 6 – µA/MHz

8-bits UDB, One shot, Trigger = None – 5 – µA/MHz

16-bits UDB, Continuous, Trigger = Rising edge – 8 – µA/MHz

16-bits UDB, One Shot, Trigger = Rising edge – 8 – µA/MHz

24-bits UDB, Continuous, Trigger = Either Edge – 10 – µA/MHz

32-bits UDB, Continuous, Trigger = Software
Controlled

– 13 – µA/MHz

AC Characteristics

Parameter Description[6] Min Typ Max[7] Units

fCLOCK Component clock frequency

8-bits UDB, Continuous, Trigger = None – – 44 MHz

8-bits UDB, One shot, Trigger = None – – 44 MHz

16-bits UDB, Continuous, Trigger = Rising edge – – 33 MHz

16-bits UDB, One Shot, Trigger = Rising edge – – 33 MHz

24-bits UDB, Continuous, Trigger = Either Edge – – 28 MHz

32-bits UDB, Continuous, Trigger = Software
Controlled

– – 25 MHz

4. For all configurations the common settings are: Enable mode = Software only, Capture mode = None,
Interrupt = On TC

5. Device IO and clock distribution current not included. The values are at 25 °C.

6. For all configurations the common settings are: Enable mode = Software only, Capture mode = None,
Interrupt = On TC

7. The values provide a maximum safe operating frequency of the Component. The Component may run at higher
clock frequencies, at which point validation of the timing requirements with STA results is necessary.

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 33 of 35

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.80 Improved GUI functionality.

Fixed controls greying out in GUI.

The parameter value change doesn't trigger other
parameters changes.

The validation mechanism was changed. The user can
leave any control at any time. An error provider is shown
when the control has wrong data.

The message box was replaced with a warning icon.

Updated the datasheet. Added DMA Support subsection to the Functional
description section

2.70.a Updated the datasheet. Clarified Functional Description section for Timer Outputs.

Updated DC and AC Electrical Characteristics for
PSoC 5LP section.

2.70 Updated SoftwareCapture() API function Improved forces a capture of the counter to the capture
FIFO in the UDB Implementation for PSoC 5LP with 24-
and 32-bit resolution.

2.60 Updated ReadCounter() API function Fixed read current counter value in the UDB
Implementation for PSoC 5LP with 24- and 32-bit
resolution.

Updated the datasheet. Updated Run Mode parameter in the Component
Parameters section

2.50.b Updated the datasheet. Updated Input / Output Connections section.

Clarified Functional Description section for PSoC 5LP.

Added a note to the FIFO section for clarity, and updated
a few numbers in the Characteristics section for accuracy.

2.50.a Edited datasheet to remove references to
PSoC 5.

PSoC 5 was replaced by PSoC 5LP.

2.50 Updated datasheet with memory usage for
PSoC 4

Support for new device.

2.40 Added MISRA Compliance section. The Component does not have any specific deviations.

2.30 Added PSoC 5LP support.

Updated customizer to remove warning
pop-up in One shot hardware enable
mode.

Updated DC and AC Electrical
characteristics.

Updated Resource and API memory
usage sections.

Timer PSoC® Creator™ Component Datasheet

Page 34 of 35 Document Number: 002-19919 Rev. **

Version Description of Changes Reason for Changes / Impact

Removed silicon revision enumerations
from symbol file. Added description for
formal parameters.

2.20 Verilog change for UDB implementation To fix a case where the TC output could be missed under
certain conditions when the hardware enable signal was
being used

Document that the interrupt signal is not
available for PSoC 5 FF implementation

This feature was removed because it could not be
supported by the silicon

Customizer updated to make Cancel
button always available

Under some error conditions the Cancel button had not
been available

Extensive datasheet updates The implementation of the Timer is different for each of
the implementations (UDB, PSoC 3 FF, PSoC 5 FF) and
these differences were not adequately described.
Particularly. see the waveforms provided in the
Configurations section of the Functional Description.

2.10 Verilog update and customizer related
updates

To fix a minor issue with Trigger logic and GUI related
issues

"Interrupt on Capture" is disabled when
Capture Mode is set to None

"Interrupt on Capture" check box option was available
even when Capture Mode is set to "None" and should not
be made available

2.0 Synchronized inputs All inputs are synchronized in the fixed-function
implementation, at the input of the block.

Timer_GetInterruptSource() function was
converted to a Macro

The Timer_GetInterruptSource() function is exactly the
same implementation as the Timer_ReadStatusRegister()
function. To save code space this was converted to a
macro substitution of the Timer_ReadStatusRegister()
function.

Outputs are now registered to the
Component clock

To avoid glitches on the outputs of the Component it is
required that all outputs be synchronized. This is done
inside of the datapath when possible, to avoid excess
resource use.

Implemented critical regions when writing
to Aux Control registers.

CyEnterCriticalSection and CyExitCriticalSections
functions are used when writing to Aux Control registers
so that it is not modified by any other process thread.

Incorrect masking rectified while setting
capture mode using SetCaptureMode()
API.

Masking used for setting capture mode has erroneous
value.

Added characterization data to datasheet

Minor datasheet edits and updates

PSoC® Creator™ Component Datasheet Timer

Document Number: 002-19919 Rev. ** Page 35 of 35

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical Component is any
Component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to Use a Timer

	Input/Output Connections
	Schematic Macro Information
	Component Parameters
	Hardware versus Software Configuration Options
	Configure Tab
	Resolution
	Implementation
	Period (Software Option)
	Trigger Mode (Software Option)
	Capture Mode (Software Option)
	Capture Mode
	Enable Capture Counter (Software Option)
	Capture Count (Software Option)
	Enable Mode
	Run Mode
	Interrupt (Software Option)

	Clock Selection
	Fixed-Function Components
	For UDB-based Components

	Application Programming Interface
	Functions
	void Timer_Start(void)
	void Timer_Stop(void)
	void Timer_SetInterruptMode(uint8 interruptMode)
	uint8 Timer_ReadStatusRegister(void)
	uint8 Timer_ReadControlRegister(void)
	void Timer_WriteControlRegister(uint8 control)
	void Timer_WriteCounter(uint8/16/32 counter)
	uint8/16/32 Timer_ReadCounter(void)
	void Timer_WritePeriod(uint8/16/32 period)
	uint8/16/32 Timer_ReadPeriod(void)
	uint8/16/32 Timer_ReadCapture(void)
	void Timer_SetCaptureMode(uint8 captureMode)
	void Timer_SetCaptureCount(uint8 captureCount)
	uint8 Timer_ReadCaptureCount(void)
	void Timer_SoftwareCapture(void)
	void Timer_SetTriggerMode(uint8 triggerMode)
	void Timer_EnableTrigger(void)
	void Timer_DisableTrigger(void)
	void Timer_SetInterruptCount(uint8 interruptCount)
	void Timer_ClearFIFO(void)
	void Timer_Sleep(void)
	void Timer_Wakeup(void)
	void Timer_Init(void)
	void Timer_Enable(void)
	void Timer_SaveConfig(void)
	void Timer_RestoreConfig(void)

	Global Variables
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	General Operation
	Timer Outputs
	Timer Inputs
	Timer Interrupt

	Timer Registers
	Configurations
	Default Configuration
	Software and Hardware Enable Configuration
	One Shot Configuration
	UDB FIFOs

	DMA Support

	Registers
	Status Register
	Timer_Status (UDB Implementation)
	Timer_Status (Fixed Function Implementation)

	Mode Register
	Timer_Mode (Fixed-Function Implementation)

	Control Register
	Counter (8-, 16-, 24-, or 32-bit Based on Resolution)
	Capture (8-, 16-, 24-, or 32-bit Based on Resolution)
	Period (8-, 16-, 24-, or 32-bit Based on Resolution)

	Component Debug Window
	Resources
	DC and AC Electrical Characteristics PSoC 3 (FF Implementation)
	DC Characteristics
	AC Characteristics

	DC and AC Electrical Characteristics for PSoC 5LP (FF Implementation)
	DC Characteristics
	AC Characteristics

	DC and AC Electrical Characteristics (UDB Implementation)
	DC Characteristics
	AC Characteristics

	Component Changes

